Page 113 - 《振动工程学报》2025年第9期
P. 113
第 9 期 屈鸣鹤,等:含常数激励的分数阶非线性隔振系统幅频特性及周期运动多样性研究 2043
的主共振响应及鞍结分岔研究 [J]. 振动工程学报,2022, super-harmonic resonance and periodic motion transition laws
35(3):569-576. of fractional order nonlinear vibration isolation system[J].
LUO Gang, HOU Lei, REN Shuangxing, et al. Saddle- Journal of Vibration and Shock,2023,42(5):66-73.
node bifurcation characteristics of asymmetrical Duffing [25] 屈鸣鹤,吴少培,俞力洋,等. 分数阶非线性隔振系统幅
system with constant excitation[J]. Journal of Vibration Engi- 频特性及稳定性研究 [J]. 噪声与振动控制,2023,43(3):
neering,2022,35(3):569-576. 40-46.
[19] HOU L,SU X C,CHEN Y S. Bifurcation modes of peri- QU Minghe, WU Shaopei, YU Liyang, et al. Study on
odic solution in a Duffing system under constant force as well amplitude-frequency characteristics and stability of fractional
as harmonic excitation[J]. International Journal of Bifurcation
order nonlinear vibration isolation system[J]. Noise and Vibra-
and Chaos,2019,29(13):1950173.
tion Control,2023,43(3):40-46.
[20] 侯磊,罗钢,苏小超,等. 常数激励与简谐激励联合作用
[26] QU M H, YANG Q, WU S P, et al. Analysis of super-
下 Duffing 系 统 的 非 线 性 振 动 [J]. 振 动 与 冲 击 , 2020,
harmonic resonance and periodic motion transition of frac-
39(4):49-54.
tional nonlinear vibration isolation system[J]. Journal of Low
HOU Lei, LUO Gang, SU Xiaochao, et al. Nonlinear
Frequency Noise, Vibration and Active Control, 2023,
vibrations of Duffing system under the combination of
42(2):771-788.
constant excitation and harmonic excitation[J]. Journal of
[27] SHEN Y J,WEI P,YANG S P. Primary resonance of frac-
Vibration and Shock,2020,39(4):49-54.
tional-order van der Pol oscillator[J]. Nonlinear Dynamics,
[21] 刘晓君,洪灵,江俊. 非自治分数阶 Duffing 系统的激变现
2014,77(4):1629-1642.
象 [J]. 物理学报,2016,65(18):231-238.
[28] 秦卫阳,任兴民,杨永锋. 含裂纹转子系统稳定性与分叉
LIU Xiaojun, HONG Ling, JIANG Jun. Crises in a non-
数值分析方法 [J]. 振动工程学报,2004,17(4):433-437.
autonomous fractional-order Duffing system[J]. Acta Physica
QIN Weiyang,REN Xingmin,YANG Yongfeng. Analysis
Sinica,2016,65(18):231-238.
on stability and bifurcation of cracked jeffcott rotor[J]. Journal
[22] SHEN Y J,WEN S F,LI X H,et al. Dynamical analysis of
of Vibration Engineering,2004,17(4):433-437.
fractional-order nonlinear oscillator by incremental harmonic
[29] LIU C R, YU K P. Superharmonic resonance of the quasi-
balance method[J]. Nonlinear Dynamics, 2016, 85( 3) :
zero-stiffness vibration isolator and its effect on the isolation
1457-1467.
[23] LI G F, SUN J, DING W C. Dynamics of a vibro-impact performance[J]. Nonlinear Dynamics, 2020, 100( 1) : 95-
system by the global analysis method in parameter-state 117.
space[J]. Nonlinear Dynamics,2019,97(1):541-557.
[24] 屈鸣鹤,吴少培,俞力洋,等. 分数阶非线性隔振系统的 第一作者:屈鸣鹤(1997—),男,博士研究生。
超谐波共振与周期运动转迁规律分析 [J]. 振动与冲击, E-mail:quminghe@nudt.edu.cn
2023,42(5):66-73. 通信作者:李 杰(1971—),男,博士,教授。
QU Minghe,WU Shaopei,YU Liyang,et al. Analysis of E-mail:jieli@nudt.edu.cn