Page 113 - 《振动工程学报》2025年第9期
P. 113

第 9 期           屈鸣鹤,等:含常数激励的分数阶非线性隔振系统幅频特性及周期运动多样性研究                                       2043

                  的主共振响应及鞍结分岔研究          [J]. 振动工程学报,2022,          super-harmonic resonance and periodic motion transition laws
                  35(3):569-576.                                    of  fractional  order  nonlinear  vibration  isolation  system[J].
                  LUO  Gang, HOU  Lei, REN  Shuangxing, et  al.  Saddle-  Journal of Vibration and Shock,2023,42(5):66-73.
                  node  bifurcation  characteristics  of  asymmetrical  Duffing  [25]  屈鸣鹤,吴少培,俞力洋,等. 分数阶非线性隔振系统幅
                  system with constant excitation[J]. Journal of Vibration Engi-  频特性及稳定性研究  [J]. 噪声与振动控制,2023,43(3):
                  neering,2022,35(3):569-576.                       40-46.
              [19]  HOU L,SU X C,CHEN Y S. Bifurcation modes of peri-  QU  Minghe, WU  Shaopei, YU  Liyang, et  al.  Study  on
                  odic solution in a Duffing system under constant force as well  amplitude-frequency  characteristics  and  stability  of  fractional
                  as harmonic excitation[J]. International Journal of Bifurcation
                                                                    order nonlinear vibration isolation system[J]. Noise and Vibra-
                  and Chaos,2019,29(13):1950173.
                                                                    tion Control,2023,43(3):40-46.
              [20]  侯磊,罗钢,苏小超,等. 常数激励与简谐激励联合作用
                                                                [26]  QU  M  H, YANG  Q, WU  S  P, et  al.  Analysis  of  super-
                  下  Duffing 系 统 的 非 线 性 振 动  [J].  振 动 与 冲 击 , 2020,
                                                                    harmonic  resonance  and  periodic  motion  transition  of  frac-
                  39(4):49-54.
                                                                    tional nonlinear vibration isolation system[J]. Journal of Low
                  HOU  Lei, LUO  Gang, SU  Xiaochao, et  al.  Nonlinear
                                                                    Frequency  Noise, Vibration  and  Active  Control, 2023,
                  vibrations  of  Duffing  system  under  the  combination  of
                                                                    42(2):771-788.
                  constant  excitation  and  harmonic  excitation[J].  Journal  of
                                                                [27]  SHEN Y J,WEI P,YANG S P. Primary resonance of frac-
                  Vibration and Shock,2020,39(4):49-54.
                                                                    tional-order  van  der  Pol  oscillator[J].  Nonlinear  Dynamics,
              [21]  刘晓君,洪灵,江俊. 非自治分数阶        Duffing 系统的激变现
                                                                    2014,77(4):1629-1642.
                  象  [J]. 物理学报,2016,65(18):231-238.
                                                                [28]  秦卫阳,任兴民,杨永锋. 含裂纹转子系统稳定性与分叉
                  LIU  Xiaojun, HONG  Ling, JIANG  Jun.  Crises  in  a  non-
                                                                    数值分析方法     [J]. 振动工程学报,2004,17(4):433-437.
                  autonomous fractional-order Duffing system[J]. Acta Physica
                                                                    QIN Weiyang,REN Xingmin,YANG Yongfeng. Analysis
                  Sinica,2016,65(18):231-238.
                                                                    on stability and bifurcation of cracked jeffcott rotor[J]. Journal
              [22]  SHEN Y J,WEN S F,LI X H,et al. Dynamical analysis of
                                                                    of Vibration Engineering,2004,17(4):433-437.
                  fractional-order  nonlinear  oscillator  by  incremental  harmonic
                                                                [29]  LIU  C  R, YU  K  P.  Superharmonic  resonance  of  the  quasi-
                  balance  method[J].  Nonlinear  Dynamics, 2016, 85( 3) :
                                                                    zero-stiffness vibration isolator and its effect on the isolation
                  1457-1467.
              [23]  LI  G  F, SUN  J, DING  W  C.  Dynamics  of  a  vibro-impact  performance[J].  Nonlinear  Dynamics, 2020, 100( 1) : 95-
                  system  by  the  global  analysis  method  in  parameter-state  117.
                  space[J]. Nonlinear Dynamics,2019,97(1):541-557.
              [24]  屈鸣鹤,吴少培,俞力洋,等. 分数阶非线性隔振系统的                  第一作者:屈鸣鹤(1997—),男,博士研究生。
                  超谐波共振与周期运动转迁规律分析             [J]. 振动与冲击,              E-mail:quminghe@nudt.edu.cn
                  2023,42(5):66-73.                             通信作者:李 杰(1971—),男,博士,教授。
                  QU Minghe,WU Shaopei,YU Liyang,et al. Analysis of     E-mail:jieli@nudt.edu.cn
   108   109   110   111   112   113   114   115   116   117   118