Page 112 - 《振动工程学报》2025年第9期
P. 112

2042                               振     动     工     程     学     报                     第 38 卷

                  275-282.                                          552-558.
                  TANG Zhenhuan,LUO Guihuo,CHEN Wei,et al. Paral-   KONG  Fan, HOU  Zhaoxu, XU  Jun, et  al.  Steady-state
                  lel dynamic model of rubber isolator about five-parameter frac-  response  determination  of  a  hysteretic  system  endowed  with
                  tional  derivatives[J].  Journal  of  Aerospace  Power, 2013,  fractional  elements  via  a  multi-harmonic  balance  method[J].
                  28(2):275-282.                                    Journal of Vibration Engineering,2021,34(3):552-558.
              [2]  段勇,刘瑞杰,马琳. 金属橡胶在鱼雷推进轴系振动控制                   [10]  ZHANG  Z, ZHANG  Y  W, DING  H.  Vibration  control
                  中的应用   [J]. 船舶力学,2020,24(9):1187-1195.            combining  nonlinear  isolation  and  nonlinear  absorption[J].
                  DUAN  Yong, LIU  Ruijie, MA  Lin.  Application  of  metal  Nonlinear Dynamics,2020,100(3):2121-2139.
                  rubber to the vibration control of torpedo propulsion shafting[J].  [11]  余慧杰,贺涛. 基于分数阶导数的金属橡胶动态特性建模
                  Journal of Ship Mechanics,2020,24(9):1187-1195.   [J]. 材料科学与工程学报,2021,39(1):52-57.
              [3]  刘海平,申大山,赵鹏鹏. 非线性三参数隔振器动力学特                       YU Huijie,HE Tao. Modeling of dynamic characteristics of
                  性研究  [J]. 振动工程学报,2021,34(3):490-498.              metal  rubber  based  on  fractional  derivative[J].  Journal  of
                  LIU  Haiping, SHEN  Dashan, ZHAO  Pengpeng.  Dynamic  Materials Science and Engineering,2021,39(1):52-57.
                  performance of a three-parameter isolator with nonlinear char-  [12]  孔凡,廖海君,韩仁杰,等. 联合激励下分数阶非线性系
                  acteristic[J].  Journal  of  Vibration  Engineering, 2021,  统非平稳响应的半解析方法  [J]. 振动工程学报,2024,
                  34(3):490-498.                                    37(8):1339-1348.
              [4]  李占龙,孙大刚,宋勇,等. 基于分数阶导数的黏弹性悬                       KONG Fan,LIAO Haijun,HAN Renjie,et al. Semi-analyt-
                  架 减 振 模 型 及 其 数 值 方法   [J].  振 动 与 冲 击 , 2016,    ical method for nonstationary response of fractional nonlinear
                  35(16):123-129.                                   systems  under  combined  excitation[J].  Journal  of  Vibration
                  LI  Zhanlong, SUN  Dagang, SONG  Yong, et  al.  A  frac-  Engineering,2024,37(8):1339-1348.
                  tional  calculus-based  vibration  suppression  model  and  its  [13]  孔凡,韩仁杰,张远进. 确定性周期与随机激励联合作用
                  numerical  solution  for  viscoelastic  suspension[J].  Journal  of  下非线性系统非平稳响应的统计线性化方法  [J]. 振动工程
                  Vibration and Shock,2016,35(16):123-129.          学报,2022,35(3):625-634.
              [5]  常宇健,田沃沃,陈恩利,等. 基于分数阶微分的金属橡                       KONG Fan,HAN Renjie,ZHANG Yuanjin. Non-stationary
                  胶 迟 滞 非 线 性 动 力 学 模型   [J].  振 动 与 冲 击 , 2020,    response of non-linear systems subjected to combined periodic
                  39(14):233-241.                                   and  non-stationary  stochastic  excitation  via  the  statistical
                  CHANG Yujian,TIAN Wowo,CHEN Enli,et al. Dynamic   linearization  method[J].  Journal  of  Vibration  Engineering,
                  model for the nonlinear hysteresis of metal rubber based on the  2022,35(3):625-634.
                  fractional-order derivative[J]. Journal of Vibration and Shock,  [14]  季颖,毕勤胜. 参外联合激励复合非线性振子的分岔分析
                  2020,39(14):233-241.                              [J]. 物理学报,2009,58(7):4431-4438.
              [6]  韩丽丽,韩红红,郑木莲. 橡胶沥青的低温应力松弛特性                       JI  Ying, BI  Qinsheng.  Bifurcation  analysis  of  a  compound
                  [J].  武 汉 理 工 大 学 学 报 ( 交 通 科 学 与 工 程 版 ) , 2021,  oscillator  with  parametric  and  external  excitation[J].  Acta
                  45(4):774-778.                                    Physica Sinica,2009,58(7):4431-4438.
                  HAN Lili,HAN Honghong,ZHENG Mulian. Low tempera-  [15]  CAI  C  C, SHEN  Y  J, WEN  S  F.  Primary  and  super-
                  ture stress relaxation properties of rubber asphalt[J]. Journal of  harmonic simultaneous resonance of van der Pol oscillator[J].
                  Wuhan  University  of  Technology( Transportation  Science  &  International Journal of Non-Linear Mechanics,2022,147:
                  Engineering),2021,45(4):774-778.                  104237.
              [7]  郭建斌,申永军. 分数阶     van der Pol-Mathieu  方程的动力学  [16]  张晓芳,董颖涛,韩修静,等. 参外联合激励下一类混沌
                  分析  [J]. 振动与冲击,2023,42(8):62-68.                  系统的动力学机理       [J]. 振动与冲击,2021,40(1):183-
                  GUO Jianbin,SHEN Yongjun. Dynamic analysis of the van  191.
                  der  Pol-Mathieu  equation  with  fraction-order  derivative[J].  ZHANG  Xiaofang, DONG  Yingtao, HAN  Xiujing, et  al.
                  Journal of Vibration and Shock,2023,42(8):62-68.  Dynamic  mechanism  of  a  class  of  chaotic  systems  under
              [8]  秦浩,温少芳,申永军,等. 基于        Melnikov  方法的分数阶         combination  of  parametric  and  external  excitation[J].  Journal
                  Duffing  振子混沌阈值解析研究     [J]. 振动与冲击,2021,          of Vibration and Shock,2021,40(1):183-191.
                  40(6):33-40.                                  [17]  史永峰,李明,刘刚,等. 水润滑橡胶轴承支承转子系统
                  QIN Hao,WEN Shaofang,SHEN Yongjun,et al. Analyti-  动力学特性研究    [J]. 船舶力学,2017,21(5):584-594.
                  cal study on the chaos threshold of a Duffing oscillator with a  SHI  Yongfeng, LI  Ming, LIU  Gang, et  al.  Study  on  the
                  fractional-order  derivative  term  by  the  Melnikov  method[J].  dynamic  characteristics  of  rotor  system  supported  on  water-
                  Journal of Vibration and Shock,2021,40(6):33-40.  lubricated  rubber  bearings[J].  Journal  of  Ship  Mechanics,
              [9]  孔凡,侯召旭,徐军,等. 基于多谐波平衡法的滞回分数                       2017,21(5):584-594.
                  阶系统稳态动力响应        [J]. 振动工程学报,2021,34(3):      [18]  罗钢,侯磊,任双兴,等. 含常数激励非对称          Duffing  系统
   107   108   109   110   111   112   113   114   115   116   117