Page 91 - 《振动工程学报》2025年第9期
P. 91
第 9 期 刘 豪,等:简支梁桥走行车桥系统的实时混合试验稳定性预测方法 2021
Mechanics,2011,28(4):200-207. [23] 赵春发,翟婉明,蔡成标. 磁浮车辆/高架桥垂向耦合动力
[17] ENOKIDA R,STOTEN D,KAJIWARA K. Stability analy- 学研究 [J]. 铁道学报,2001,23(5):27-33.
sis and comparative experimentation for two substructuring ZHAO Chunfa, ZHAI Wanming, CAI Chengbiao. Maglev
schemes,with a pure time delay in the actuation system[J]. vehicle/elevated-beam guideway vertical coupling dynamics[J].
Journal of Sound and Vibration,2015,346:1-16. Journal of the China Railway Society,2001,23(5):27-33.
[18] 唐贞云,郭珺,洪越,等. 多自由度实时子结构试验系统 [24] WANG Z L,XU Y L,LI G Q,et al. Modelling and valida-
稳定性分析方法 [J]. 工程力学,2018,35(3):22-29. tion of coupled high-speed maglev train-and-viaduct systems
considering support flexibility[J]. Vehicle System Dynamics,
TANG Zhenyun,GUO Jun,HONG Yue,et al. An analyti-
2019,57(2):161-191.
cal method of system stability for MDOF real-time substruc-
[25] 林玉森,李小珍,强士中. 车-桥耦合振动中 2 种轮轨接触
turing testing[J]. Engineering Mechanics, 2018, 35( 3) :
模型的比较分析 [J]. 中国铁道科学,2007,28(6):70-74.
22-29.
LIN Yusen,LI Xiaozhen,QIANG Shizhong. Contrast analy-
[19] HUANG L,CHEN C,HUANG S J,et al. Stability of real-
sis of two wheel-rail contact models in the coupling vibration
time hybrid simulation involving time-varying delay and direct
of vehicle-bridge system[J]. China Railway Science, 2007,
integration algorithms[J]. Journal of Vibration and Control,
28(6):70-74.
2022,28(13-14):1818-1834.
[26] STOTEN D P,HYDE R A. Adaptive control of dynamically
[20] 杨宜谦,姚京川,孟鑫,等. 时速 300~350 km 高速铁路
substructured systems:the single-input single-output case[J].
桥梁动力性能试验研究 [J]. 中国铁道科学,2013,34(3):
Proceedings of the Institution of Mechanical Engineers,Part
14-19.
I: Journal of Systems and Control Engineering, 2006,
YANG Yiqian,YAO Jingchuan,MENG Xin,et al. Experi-
220(2):63-79.
mental study on dynamic behaviors of bridges for 300~350
[27] TANG Z Y,DIETZ M,LI Z B,et al. The performance of
km·h high speed railway[J]. China Railway Science. 2013,
−1
delay compensation in real-time dynamic substructuring[J].
34(3):14-19.
Journal of Vibration and Control, 2018, 24( 21) : 5019-
[21] 刘晶波,杜修力. 结构动力学 [M]. 北京:机械工业出版
5029.
社,2005.
[28] 刘豹,唐万生. 现代控制理论 [M]. 3 版. 北京: 机械工业出
[22] 肖新标,沈火明. 3 种车-桥耦合振动分析模型的比较研究
版社,2006.
[J]. 西南交通大学学报,2004,39(2):172-175.
XIAO Xinbiao, SHEN Huoming. Comparison of three 第一作者:刘 豪(1996—),男,博士,特别研究员。
models for vehicle-bridge coupled vibration analysis[J]. Jour- E-mail:liuhao_vv@163.com
nal of Southwest Jiaotong University,2004,39(2):172- 通信作者:唐贞云(1983—),男,博士,教授。
175. E-mail:tzy@bjut.edu.cn
附录 A:
基于 Newmark-β 法的桥梁数值子结构离散状态空间方程中各系数表达式为:
( ) ( ) ( )
K −1 K −1 K −1
a 0 M q +a 1 C q a 2 M q +a 4 C q a 3 M q +a 5 C q
( ) ( ) ( )
−1
−1
−1
A b = K a 0 a 7 a 0 M q +a 1 C q −a 0 a 7 E K a 0 a 7 a 2 M q +a 4 C q −(a 2 a 7 −1) E K a 0 a 7 a 3 M q +a 5 C q −(a 3 a 7 −a 6 ) EE ;
( ) ( ) ( )
−1 −1 −1
K a 0 a 0 M q +a 1 C q −a 0 E K a 0 a 2 M q +a 4 C q −a 2 E K a 0 a 3 M q +a 5 C q −a 3 E
−1
K
[ ]
¨
˙
−1
×ϕ(vt i+1 );C b,i+1 = ϕ(vt i+1 ) 2ϕ(vt i+1 ) ϕ(vt i+1 ) ;
B b,i+1 = K a 0 a 7
−1
−K a 0 M q
(A1)
K = K q +a 0 M q +a 1 C q
式中,a 0 ~a 7 为 Newmark-β 法的系数,如下式所示,其他参数说明见 1.1 节。
1 γ 1 1
a 0 = ;a 1 = ;a 2 = ;a 3 = −1;
β∆t 2 β∆t 2 β∆t 2β
( )
γ ∆t γ
a 4 = −1;a 5 = −2 ;a 6 = ∆t(1−γ);a 7 = γ∆t (A2)
β 2 β
附录 B:
基于 4 阶龙格-库塔法的列车物理子结构离散状态空间方程中各系数表达式为: