Page 91 - 《振动工程学报》2025年第9期
P. 91

第 9 期                刘 豪,等:简支梁桥走行车桥系统的实时混合试验稳定性预测方法                                        2021

                  Mechanics,2011,28(4):200-207.                 [23]  赵春发,翟婉明,蔡成标. 磁浮车辆/高架桥垂向耦合动力
              [17]  ENOKIDA R,STOTEN D,KAJIWARA K. Stability analy-  学研究  [J]. 铁道学报,2001,23(5):27-33.
                  sis  and  comparative  experimentation  for  two  substructuring  ZHAO  Chunfa, ZHAI  Wanming, CAI  Chengbiao.  Maglev
                  schemes,with a pure time delay in the actuation system[J].  vehicle/elevated-beam guideway vertical coupling dynamics[J].
                  Journal of Sound and Vibration,2015,346:1-16.     Journal of the China Railway Society,2001,23(5):27-33.
              [18]  唐贞云,郭珺,洪越,等. 多自由度实时子结构试验系统                  [24]  WANG Z L,XU Y L,LI G Q,et al. Modelling and valida-
                  稳定性分析方法     [J]. 工程力学,2018,35(3):22-29.           tion  of  coupled  high-speed  maglev  train-and-viaduct  systems
                                                                    considering support flexibility[J]. Vehicle System Dynamics,
                  TANG Zhenyun,GUO Jun,HONG Yue,et al. An analyti-
                                                                    2019,57(2):161-191.
                  cal method of system stability for MDOF real-time substruc-
                                                                [25]  林玉森,李小珍,强士中. 车-桥耦合振动中          2 种轮轨接触
                  turing  testing[J].  Engineering  Mechanics, 2018, 35( 3) :
                                                                    模型的比较分析     [J]. 中国铁道科学,2007,28(6):70-74.
                  22-29.
                                                                    LIN Yusen,LI Xiaozhen,QIANG Shizhong. Contrast analy-
              [19]  HUANG L,CHEN C,HUANG S J,et al. Stability of real-
                                                                    sis of two wheel-rail contact models in the coupling vibration
                  time hybrid simulation involving time-varying delay and direct
                                                                    of  vehicle-bridge  system[J].  China  Railway  Science, 2007,
                  integration  algorithms[J].  Journal  of  Vibration  and  Control,
                                                                    28(6):70-74.
                  2022,28(13-14):1818-1834.
                                                                [26]  STOTEN D P,HYDE R A. Adaptive control of dynamically
              [20]  杨宜谦,姚京川,孟鑫,等. 时速        300~350 km  高速铁路
                                                                    substructured systems:the single-input single-output case[J].
                  桥梁动力性能试验研究        [J]. 中国铁道科学,2013,34(3):
                                                                    Proceedings of the Institution of Mechanical Engineers,Part
                  14-19.
                                                                    I:  Journal  of  Systems  and  Control  Engineering, 2006,
                  YANG Yiqian,YAO Jingchuan,MENG Xin,et al. Experi-
                                                                    220(2):63-79.
                  mental  study  on  dynamic  behaviors  of  bridges  for  300~350
                                                                [27]  TANG Z Y,DIETZ M,LI Z B,et al. The performance of
                  km·h  high speed railway[J]. China Railway Science. 2013,
                      −1
                                                                    delay  compensation  in  real-time  dynamic  substructuring[J].
                  34(3):14-19.
                                                                    Journal  of  Vibration  and  Control, 2018, 24( 21) : 5019-
              [21]  刘晶波,杜修力. 结构动力学       [M]. 北京:机械工业出版
                                                                    5029.
                  社,2005.
                                                                [28]  刘豹,唐万生. 现代控制理论      [M]. 3  版. 北京: 机械工业出
              [22]  肖新标,沈火明. 3  种车-桥耦合振动分析模型的比较研究
                                                                    版社,2006.
                  [J]. 西南交通大学学报,2004,39(2):172-175.
                  XIAO  Xinbiao, SHEN  Huoming.  Comparison  of  three  第一作者:刘 豪(1996—),男,博士,特别研究员。
                  models for vehicle-bridge coupled vibration analysis[J]. Jour-  E-mail:liuhao_vv@163.com
                  nal of Southwest Jiaotong University,2004,39(2):172-  通信作者:唐贞云(1983—),男,博士,教授。
                  175.                                                  E-mail:tzy@bjut.edu.cn

                  附录  A:

                  基于  Newmark-β 法的桥梁数值子结构离散状态空间方程中各系数表达式为:
                            (          )                 (         )                    (          )
                                                                                                           
                         K −1                         K −1                           K  −1
                            a 0 M q +a 1 C q            a 2 M q +a 4 C q                a 3 M q +a 5 C q   
                                                                                                           
                          (         )               (         )                   (          )             
                                                                                                           
                      −1
                                                −1
                                                                              −1
               A b =  K a 0 a 7 a 0 M q +a 1 C q −a 0 a 7 E  K a 0 a 7 a 2 M q +a 4 C q −(a 2 a 7 −1) E  K a 0 a 7 a 3 M q +a 5 C q −(a 3 a 7 −a 6 ) EE  ;
                                                                                                            
                   
                                                                                                            
                   
                                                                                                           
                                                                                                           
                          (         )                 (          )                    (         )          
                       −1                          −1                             −1                       
                      K a 0 a 0 M q +a 1 C q −a 0 E  K a 0 a 2 M q +a 4 C q −a 2 E  K a 0 a 3 M q +a 5 C q −a 3 E
                          −1   
                         K
                               
                               
                                             [                        ]
                               
                                                                  ¨
                                                          ˙
                        −1     
                                ×ϕ(vt i+1 );C b,i+1 =  ϕ(vt i+1 )  2ϕ(vt i+1 )  ϕ(vt i+1 ) ;
                                
              B b,i+1 =    K a 0 a 7  
                               
                               
                        −1     
                      −K a 0 M q
                                                                                                        (A1)
              K = K q +a 0 M q +a 1 C q
              式中,a 0 ~a 7 为  Newmark-β 法的系数,如下式所示,其他参数说明见               1.1  节。
                                               1        γ       1       1
                                          a 0 =   ;a 1 =  ;a 2 =  ;a 3 =  −1;
                                              β∆t 2    β∆t 2   β∆t     2β
                                                         (    )
                                              γ        ∆t γ
                                          a 4 =  −1;a 5 =   −2 ;a 6 = ∆t(1−γ);a 7 = γ∆t                 (A2)
                                              β        2 β
                  附录  B:
                  基于  4  阶龙格-库塔法的列车物理子结构离散状态空间方程中各系数表达式为:
   86   87   88   89   90   91   92   93   94   95   96