Page 71 - 《振动工程学报》2025年第9期
P. 71

第 9 期                         李 扬,等:数据驱动的非高斯随机过程模拟                                         2001


                            表 2 超越概率误差对比                        [7]  WINTERSTEIN S R. Nonlinear vibration models for extremes
                                                                    and  fatigue[J].  Journal  of  Engineering  Mechanics, 1988,
                  Tab. 2 Comparison of exceedance probability errors

                                                                    114(10):1772-1790.
                         方法                  超越概率误差             [8]  何桢,吴静,孔祥芬. 基于      Johnson 转换的非正态过程能力
                       本文方法                     0.0088              研究  [J]. 组合机床与自动化加工技术,2007(8):104-107.
                   传统多项式转换模型                    0.0227              HE  Zhen, WU  Jing, KONG  Xiangfen.  A  study  of  non-
                                                                    normal  process  capability  using  Johnson  transformation
                   统一多项式转换模型                    0.0155
                                                                    system[J].  Modular  Machine  Tool  &  Automatic  Manufactur-
                                                                    ing Technique,2007(8):104-107.
              4    结     论                                      [9]  GRIGORIU M. Simulation of stationary non-Gaussian transla-
                                                                    tion  processes[J].  Journal  of  Engineering  Mechanics, 1998,
                                                                    124(2):121-126.
                  本文提出了一种数据驱动的非高斯随机过程模                          [10]  XIAO Q. Evaluating correlation coefficient for Nataf transfor-
              拟方法,解决了确定样本转换关系和潜在高斯功率                                mation[J]. Probabilistic Engineering Mechanics,2014,37:1-6.
                                                                [11]  LI Z L,LIU R Y,FAN W L,et al. Simulation of stationary
              谱这两个关键问题,能够基于样本数据实现非高斯
                                                                    Gaussian/non-Gaussian stochastic processes based on stochas-
              随机过程模拟。采用数值算例和工程实例,对本文                                tic  harmonic  functions[J].  Probabilistic  Engineering  Mechan-
              方法进行了验证,并得出以下结论:                                      ics,2021,66:103141.
                                                                [12]  毛健,赵红东,姚婧婧. 人工神经网络的发展及应用            [J]. 电
                  (1)样本转换模型的优势。数据驱动构建的样                             子设计工程,2011,19(24):62-65.
              本转换模型具备精确、高效和广泛适用的优势,能                                MAO  Jian, ZHAO  Hongdong, YAO  Jinjging.  Application
              够准确地将高斯样本转换为非高斯样本,相对于多                                and prospect of artificial neural network[J]. Electronic Design
                                                                    Engineering,2011,19(24):62-65.
              项式转换模型具有显著优势。                                     [13]  刘章军,刘增辉. 随机脉动风场的谱表示降维模拟            [J]. 振动
                  (2)潜在高斯功率谱的有效性。直接通过反向                             工程学报,2018,31(1):49-56.
                                                                    LIU  Zhangjun, LIU  Zenghui.  Dimension  reduction  based
              传播网络获得的潜在高斯功率谱证明了其有效性,
                                                                    spectral  representation  of  stochastic  fluctuation  wind  field
              避免了繁琐耗时的求解过程。                                         simulation[J].  Journal  of  Vibration  Engineering, 2018, 31
                  (3)通过对比样本的统计矩、累积概率和超越概                            (1):49-56.
                                                                [14]  SHINOZUKA  M, JAN  C  M.  Digital  simulation  of  random
              率,可以发现:本文方法生成的样本具有参考数据的                               processes and its applications[J]. Journal of Sound and Vibra-
              概率特征,其非高斯特性与数据保持一致,同时样本                               tion,1972,25(1):111-128.
                                                                [15]  RIPLEY B D. Neural networks and related methods for classi-
              的频域信息与目标功率谱吻合良好。这验证了本文
                                                                    fication[J]. Journal of the Royal Statistical Society:Series B
              方法的有效性和适用性,并展示了其在精度、效率                                (Methodological),1994,56(3):409-437.
              和适用性等方面相对于多项式转换模型的优越性。                            [16]  XU  J, DANG  C.  A  new  bivariate  dimension  reduction
                                                                    method for efficient structural reliability analysis[J]. Mechani-
                                                                    cal Systems and Signal Processing,2019,115:281-300.
              参考文献:                                             [17]  罗成汉. 基于  MATLAB  神经网络工具箱的      BP  网络实现
                                                                    [J]. 计算机仿真,2004,21(5):109-111.
                                                                    LUO  Chenghan.  Realization  of  BP  network  based  on  neual
              [1]  辛亚兵,刘志文,邵旭东,等. 山区地形实测风非平稳特
                                                                    network  tool  kit  in  MATLAB[J].  Computer  Simulation,
                  性和非高斯特性分析        [J]. 振动与冲击,2018,37(21):
                                                                    2004,21(5):109-111.
                  247-252.
                                                                [18]  ZHAO Z Z,XIN H P,REN Y Q,et al. Application and
                  XIN  Yabing, LIU  Zhiwen, SHAO  Xudong, et  al.  Non-
                                                                    comparison of BP neural network algorithm in MATLAB[C]//
                  stationary  and  non-Gaussian  features  of  mountain  terrain
                  measured  wind[J].  Journal  of  Vibration  and  Shock, 2018,  Proceedings of International Conference on Measuring Techno-
                                                                    logy and Mechatronics Automation. IEEE,2010,1:590-593.
                  37(21):247-252.                               [19]  KAIMAL J C,WYNGAARD J C,IZUMI Y,et al. Spec-
              [2]  GARCIA-ROMEU-MARTINEZ M A ,ROUILLARD V. On
                                                                    tral  characteristics  of  surface-layer  turbulence[J].  Quarterly
                  the statistical distribution of road vehicle vibrations[J]. Packag-
                                                                    Journal  of  the  Royal  Meteorological  Society, 1972,
                  ing Technology and Science,2011,24(8):451-467.
              [3]  SHIELDS  M  D, DEODATIS  G, BOCCHINI  P.  A  simple  98(417):563-589.
                                                                [20]  WINTERSTEIN S R,KASHEF T. Moment-based load and
                  and efficient methodology to approximate a general non-Gaus-
                                                                    response models with wind engineering applications[J]. Jour-
                  sian  stationary  stochastic  process  by  a  translation  process[J].
                                                                    nal of Solar Energy Engineering,2000,122(3):122-128.
                  Probabilistic Engineering Mechanics,2011,26(4):511-519.  [21]  ZHANG X Y,ZHAO Y G,LU Z H. Unified Hermite poly-
              [4]  PHOON  K  K, HUANG  S  P, QUEK  S  T.  Simulation  of
                                                                    nomial  model  and  its  application  in  estimating  non-Gaussian
                  second-order  processes  using  Karhunen-Loeve  expansion[J].
                                                                    processes[J].  Journal  of  Engineering  Mechanics, 2019,
                  Computers & Structures,2002,80(12):1049-1060.
              [5]  SENGUPTA  D, KAY  S.  Efficient  estimation  of  parameters  145(3):04019001.
                  for  non-Gaussian  autoregressive  processes[J].  IEEE  Transac-
                  tions on Acoustics,Speech,and Signal Processing,1989,  第一作者:李 扬(1993—),男,博士研究生。
                  37(6):785-794.
                                                                        E-mail:lyang@hnu.edu.cn
              [6]  LAHCENE  B.  On  Pearson  families  of  distributions  and  its
                                                                通信作者:徐 军(1986—),男,博士,教授。
                  applications[J]. African Journal of Mathematics and Computer
                  Science Research,2013,6(5):108-117.                   E-mail:xujun86@hnu.edu.cn
   66   67   68   69   70   71   72   73   74   75   76