Page 54 - 《振动工程学报》2025年第9期
P. 54

1984                               振     动     工     程     学     报                     第 38 卷

              一定程度上受到倒塌失效点的影响,因此,在线性回                           [9]  MIANO A,JALAYER F,EBRAHIMIAN H,et al. Cloud
              归分析中排除倒塌状态的散点,易损性结果将会具                                to IDA:efficient fragility assessment with limited scaling[J].
              有更高的准确度。                                              Earthquake  Engineering  &  Structural  Dynamics, 2018,
                  在考虑了非平稳随机余震后,得到的结构易损                              47(5):1124-1147.
                                                                [10]  SHINOZUKA  M, FENG  M  Q, LEE  J, et  al.  Statistical
              性曲线整体呈现左移趋势,即相同的地震动强度将
                                                                    analysis of fragility curves[J]. Journal of Engineering Mechan-
              导致更大的结构失效风险,同时相同的失效概率仅
                                                                    ics,2000,126(12):1224-1231.
              需要更小的地震动强度值。通过对比分析可以发
                                                                [11]  MAI C,KONAKLI K,SUDRET B. Seismic fragility curves
              现,如若不考虑随机余震的影响,地震序列对结构造
                                                                    for  structures  using  non-parametric  representations[J].  Fron-
              成的概率破坏风险将被大幅低估,因此,在考虑了非
                                                                    tiers of Structural and Civil Engineering,2017,11(2):169-
              平稳随机主余震序列后,在一定程度上可以获得更                                186.
              为客观的概率易损性评价结果。本文对于三种常用                            [12]  LI  J.  A  PDEM-based  perspective  to  engineering  reliability:
              地震易损性计算方法的讨论以及非平稳随机主余震                                from structures to lifeline networks[J]. Frontiers of Structural
              序列下地震易损性计算结果的对比分析可为后续研                                and Civil Engineering,2020,14(5):1056-1065.
              究中的策略选择及工程评价提供参考。                                 [13]  KANAI K. Semi-empirical formula for the seismic characteris-
                                                                    tics  of  the  ground[J].  Bulletin  of  the  Earthquake  Research
                                                                    Institute,1957,35:309-325.
              参考文献:
                                                                [14]  TAJIMI  H.  A  statistical  method  of  determing  the  maximum

                                                                    response of a building structure during an earthquake[C]//Proc-
              [1]  于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分
                                                                    ceedings  of  2nd  World  Conference  Earthquake  Engineering.
                  析  [D]. 哈尔滨:哈尔滨工业大学,2012.
                                                                    Tokyo,1960:781-797.
                  YU Xiaohui. Probabilistic seimic fragility and risk analysis of
                                                                [15]  CLOUGH  R  W, PENZIEN  J.  Dynamics  of  Structures[M].
                  reinforced concrete frame structures[D]. Harbin:Harbin Insti-
                                                                    New York:Computers and Structures Inc.,1975.
                  tute of Technology,2012.
                                                                [16]  LIU Z J,LIU W,PENG Y B. Random function based spec-
              [2]  LI Y,ELLINGWOOD B R. Framework for multihazard risk
                                                                    tral  representation  of  stationary  and  non-stationary  stochastic
                  assessment  and  mitigation  for  wood-frame  residential
                                                                    processes[J].  Probabilistic  Engineering  Mechanics, 2016,
                  construction[J].  Journal  of  Structural  Engineering, 2009,
                                                                    45:115-126.
                  135(2):159-168.
                                                                [17]  方兴. 地震动过程的随机函数—谱表示模型及其工程应用
              [3]  CAO X Y,WU G,FENG D C,et al. Research on the seis-
                                                                    [D]. 宜昌:三峡大学,2013.
                  mic  retrofitting  performance  of  RC  frames  using  SC-PBSPC
                                                                    FANG  Xing.  Random  function  &  spectral  representation
                  BRBF  substructures[J].  Earthquake  Engineering  &  Structural
                                                                    model  of  strong  ground  motion  and  its  application[D].
                  Dynamics,2020,49(8):794-816.                      Yichang: China Three Gorges University,2013.
              [4]  CAO X Y,FENG D C,WU G. Pushover-based probabilis-  [18]  曾波. 非平稳地震动过程的概率模型及在重力坝抗震分析
                  tic  seismic  capacity  assessment  of  RCFs  retrofitted  with  中的应用  [D]. 宜昌:三峡大学,2015.
                  PBSPC  BRBF  sub-structures[J].  Engineering  Structures,  ZENG  Bo.  Probabilistic  model  of  non-stationary  ground
                  2021,234:111919.                                  motion  and  seismic  dynamic  analysis  of  the  gravity  dam[D].
              [5]  CAO X Y,FENG D C,WU G,et al. Probabilistic seismic  Yichang:China Three Gorges University,2015.
                  performance assessment of RC frames retrofitted with external  [19]  刘章军,曾波,吴林强. 非平稳地震动过程模拟的谱表示-
                  SC-PBSPC  BRBF  sub-structures[J].  Journal  of  Earthquake  随机函数方法  [J]. 振动工程学报,2015,28(3):411-417.
                  Engineering,2022,26(11):5775-5798.                LIU  Zhangjun, ZENG  Bo, WU  Linqiang.  Simulation  of
              [6]  CORNELL C A,JALAYER F,HAMBURGER R O,et al.       non-stationary  ground  motion  by  spectral  representation  and
                  Probabilistic basis for 2000 SAC federal emergency manage-  random  functions[J].  Journal  of  Vibration  Engineering,
                  ment  agency  steel  moment  frame  guidelines[J].  Journal  of  2015,28(3):411-417.
                  Structural Engineering,2002,128(4):526-533.   [20]  欧进萍, 王光远. 结构随机振动     [M]. 北京: 高等教育出版
              [7]  VAMVATSIKOS D,CORNELL C A. Incremental dynamic   社, 1998.
                  analysis[J].  Earthquake  Engineering  &  Structural  Dynamics,  OU Jingping, WANG Guangyuan. Random Vibration of Struc-
                  2002,31(3):491-514.                               tures[M]. Beijing: Higher Education Press, 1998.
              [8]  JALAYER  F, CORNELL  C  A.  Alternative  non-linear  [21]  周洲,于晓辉,吕大刚. 主余震序列作用下钢筋混凝土框
                  demand  estimation  methods  for  probability-based  seismic  架结构的易损性分析及安全评估  [J]. 工程力学,2018,
                  assessments[J]. Earthquake Engineering & Structural Dynam-  35(11):134-145.
                  ics,2009,38(8):951-972.                           ZHOU Zhou,YU Xiaohui,LYU Dagang. Fragility analysis
   49   50   51   52   53   54   55   56   57   58   59