Page 166 - 《振动工程学报》2025年第9期
P. 166

2096                               振     动     工     程     学     报                     第 38 卷

              用拉格朗日方程推导出转子系统的运动方程,并将                            [5]  VAN  DER  HEIJDEN  G  H  M.  Mode-locking  in  nonlinear
              转子运动从静止坐标系转化为旋转坐标系,在旋转                                rotordynamics[J].  Journal  of  Nonlinear  Science, 1995,
              坐标系下采用       Runge-Kutta 法求解运动方程,利用事                  5(3):257-283.
                                                                [6]  VAN  DER  HEIJDEN  G  H  M.  Bifurcation  sequences  in  the
              件检测函数检测接触和非接触运动,得到如下结论:
                                                                    interaction of resonances in a model deriving from nonlinear
                  (1)从旋转坐标系下的坎贝尔图可以看出,反向
                                                                    rotor rotordynamics:the zipper[J]. Dynamics and Stability of
              频率与正向频率         2∶1  的转速为    437.6、546.7、616.2、
                                                                    Systems,2000,15(2):159-183.
              724.9 r/min,反向频率与正向频率       3∶1  的转速为    291.7、
                                                                [7]  YANG Y,CAO D Q,YU T H,et al. Prediction of dynamic
              344.5、 430.2、 482.9 r/min。 由 分 岔 图 可 以 看 出 , 在
                                                                    characteristics  of  a  dual-rotor  system  with  fixed  point
              138  和  372 r/min  的两个临界转速下,出现了主共振振                   rubbing—theoretical analysis and experimental study[J]. Inter-
              幅跳跃现象,并得出两个非同步接触响应转速区间                                national  Journal  of  Mechanical  Sciences, 2016, 115-116:
              [384,486] 和  [780,960] r/min。                         253-261.
                  (2)转速为    411 r/min  时,在旋转坐标系下转子         2    [8]  VON GROLL G,EWINS D J. A Mechanism of low subhar-
              的轴心轨迹图、x 方向的          Poincaré映射和时域曲线体                monic  response  in  rotor/stator  contact —measurements  and
              现了其在旋转坐标系下的周期运动;由静止坐标系                                simulations[J]. Journal of Vibration and Acoustics,Transac-
              和旋转坐标系下转子          2 在  x 方向的频谱图发现,在旋                 tions of the ASME,2002,124(3):350-358.
                                                                [9]  CHRISTOFOROU  A  P, YIGIT  A  S.  Fully  coupled  vibra-
              转坐标系下      3  个峰值对应的频率存在           3  倍频关系,
                                                                    tions  of  actively  controlled  drillstrings[J].  Journal  of  Sound
              即第   1  阶反向模态频率等于         3  倍的第  2  阶正向模态
                                                                    and Vibration,2003,267(5):1029-1045.
              频率,即    3∶1  内共振。
                                                                [10]  HU  L, LIU  Y  B, TENG  W, et  al.  Nonlinear  coupled
                  (3)转速为    420  和  840 r/min  时,在旋转坐标系下
                                                                    dynamics of a rod fastening rotor under rub-impact and initial
              转子   2  的轴心轨迹图、x 方向的         Poincaré映射和时域            permanent deflection[J]. Energies,2016,9(11):883.
              曲线表现出周期运动。由静止坐标系和旋转坐标系                            [11]  JACQUET-RICHARDET G,TORKHANI M,CARTRAUD
              下转子    2  在  x 方向的频谱图发现,两个转速下第             1  阶       P, et  al.  Rotor  to  stator  contacts  in  turbomachines.  Review
              反向模态频率等于          2  倍的第  1  阶正向模态频率,第                and  application[J].  Mechanical  Systems  and  Signal  Process-
              2  阶反向模态频率等于         2  倍的第  2  阶正向模态频率,              ing,2013,40(2):401-420.
              即  2∶1  内共振。                                      [12]  MUSZYNSKA  A, GOLDMAN  P.  Chaotic  responses  of
                  本文研究工作为设计转子系统避免正反向模态                              unbalanced  rotor/bearing/stator  systems  with  looseness  or
                                                                    rubs[J].  Chaos, Solitons  &  Fractals, 1995, 5( 9) : 1683-
              频率   2∶1  内共振与    3∶1  内共振提供理论依据,后续
                                                                    1704.
              将深入研究考虑转静子碰摩下的模态内共振特性。
                                                                [13]  INOUE  T, ISHIDA  Y.  Chaotic  vibration  and  internal  reso-
                                                                    nance phenomena in rotor systems[J]. Journal of Vibration and
              参考文献:
                                                                    Acoustics,2006,128(2):156-169.

                                                                [14]  ZILLI A,WILLIAMS R J, EWINS D J,et al. Nonlinear
              [1]  ŁUCZKO  J.  A  geometrically  non-linear  model  of  rotating  dynamics of a simplified model of an overhung rotor subjected
                  shafts  with  internal  resonance  and  self-excited  vibration[J].  to intermittent annular rubs[J]. Journal of Engineering for Gas
                  Journal of Sound and Vibration,2002,255(3):433-456.  Turbines and Power,2015,137(6):065001.
              [2]  GREEN K,CHAMPNEYS A R,LIEVEN N J. Bifurcation  [15]  SHAW A D,CHAMPNEYS A R,FRISWELL M I. Asyn-
                  analysis  of  an  automatic  dynamic  balancing  mechanism  for  chronous  partial  contact  motion  due  to  internal  resonance  in
                  eccentric  rotors[J].  Journal  of  Sound  and  Vibration, 2006,  multiple  degree-of-freedom  rotordynamics[J].  Proceedings
                  291(3-5):861-881.                                 Mathematical,Physical,and Engineering Sciences,2016,
              [3]  RODRIGUES D J,CHAMPNEYS A R,FRISWELL M I,        472(2192):20160303.
                  et  al.  Two-plane  automatic  balancing: a  symmetry  breaking  [16]  SHAW A D,CHAMPNEYS A R,FRISWELL M I. Normal
                  analysis[J].  International  Journal  of  Non-Linear  Mechanics,  form  analysis  of  bouncing  cycles  in  isotropic  rotor  stator
                  2011,46(9):1139-1154.                             contact  problems[J].  International  Journal  of  Mechanical
              [4]  VAN DE WOUW N,NIJMEIJER H,MIHAJLOVIĆ N. On       Sciences,2019,155:83-97.
                  the coupling between torsional and lateral vibrations in a rotor  [17]  AKAY M S,SHAW A D,FRISWELL M I. Continuation
                  dynamic system with set-valued friction[C]//Proceedings of the  analysis of a nonlinear rotor system[J]. Nonlinear Dynamics,
                  ASME  2007  International  Design  Engineering  Technical  2021,105(1):25-43.
                  Conferences  and  Computers  and  Information  in  Engineering  [18]  FRISWELL  M  I, PENNY  J  E  T, GARVEY  S  D, et  al.
                  Conference. ASME,2007:213-222.                    Dynamics of Rotating Machines[M]. Cambridge:Cambridge
   161   162   163   164   165   166   167   168   169   170   171