Page 166 - 《振动工程学报》2025年第9期
P. 166
2096 振 动 工 程 学 报 第 38 卷
用拉格朗日方程推导出转子系统的运动方程,并将 [5] VAN DER HEIJDEN G H M. Mode-locking in nonlinear
转子运动从静止坐标系转化为旋转坐标系,在旋转 rotordynamics[J]. Journal of Nonlinear Science, 1995,
坐标系下采用 Runge-Kutta 法求解运动方程,利用事 5(3):257-283.
[6] VAN DER HEIJDEN G H M. Bifurcation sequences in the
件检测函数检测接触和非接触运动,得到如下结论:
interaction of resonances in a model deriving from nonlinear
(1)从旋转坐标系下的坎贝尔图可以看出,反向
rotor rotordynamics:the zipper[J]. Dynamics and Stability of
频率与正向频率 2∶1 的转速为 437.6、546.7、616.2、
Systems,2000,15(2):159-183.
724.9 r/min,反向频率与正向频率 3∶1 的转速为 291.7、
[7] YANG Y,CAO D Q,YU T H,et al. Prediction of dynamic
344.5、 430.2、 482.9 r/min。 由 分 岔 图 可 以 看 出 , 在
characteristics of a dual-rotor system with fixed point
138 和 372 r/min 的两个临界转速下,出现了主共振振 rubbing—theoretical analysis and experimental study[J]. Inter-
幅跳跃现象,并得出两个非同步接触响应转速区间 national Journal of Mechanical Sciences, 2016, 115-116:
[384,486] 和 [780,960] r/min。 253-261.
(2)转速为 411 r/min 时,在旋转坐标系下转子 2 [8] VON GROLL G,EWINS D J. A Mechanism of low subhar-
的轴心轨迹图、x 方向的 Poincaré映射和时域曲线体 monic response in rotor/stator contact —measurements and
现了其在旋转坐标系下的周期运动;由静止坐标系 simulations[J]. Journal of Vibration and Acoustics,Transac-
和旋转坐标系下转子 2 在 x 方向的频谱图发现,在旋 tions of the ASME,2002,124(3):350-358.
[9] CHRISTOFOROU A P, YIGIT A S. Fully coupled vibra-
转坐标系下 3 个峰值对应的频率存在 3 倍频关系,
tions of actively controlled drillstrings[J]. Journal of Sound
即第 1 阶反向模态频率等于 3 倍的第 2 阶正向模态
and Vibration,2003,267(5):1029-1045.
频率,即 3∶1 内共振。
[10] HU L, LIU Y B, TENG W, et al. Nonlinear coupled
(3)转速为 420 和 840 r/min 时,在旋转坐标系下
dynamics of a rod fastening rotor under rub-impact and initial
转子 2 的轴心轨迹图、x 方向的 Poincaré映射和时域 permanent deflection[J]. Energies,2016,9(11):883.
曲线表现出周期运动。由静止坐标系和旋转坐标系 [11] JACQUET-RICHARDET G,TORKHANI M,CARTRAUD
下转子 2 在 x 方向的频谱图发现,两个转速下第 1 阶 P, et al. Rotor to stator contacts in turbomachines. Review
反向模态频率等于 2 倍的第 1 阶正向模态频率,第 and application[J]. Mechanical Systems and Signal Process-
2 阶反向模态频率等于 2 倍的第 2 阶正向模态频率, ing,2013,40(2):401-420.
即 2∶1 内共振。 [12] MUSZYNSKA A, GOLDMAN P. Chaotic responses of
本文研究工作为设计转子系统避免正反向模态 unbalanced rotor/bearing/stator systems with looseness or
rubs[J]. Chaos, Solitons & Fractals, 1995, 5( 9) : 1683-
频率 2∶1 内共振与 3∶1 内共振提供理论依据,后续
1704.
将深入研究考虑转静子碰摩下的模态内共振特性。
[13] INOUE T, ISHIDA Y. Chaotic vibration and internal reso-
nance phenomena in rotor systems[J]. Journal of Vibration and
参考文献:
Acoustics,2006,128(2):156-169.
[14] ZILLI A,WILLIAMS R J, EWINS D J,et al. Nonlinear
[1] ŁUCZKO J. A geometrically non-linear model of rotating dynamics of a simplified model of an overhung rotor subjected
shafts with internal resonance and self-excited vibration[J]. to intermittent annular rubs[J]. Journal of Engineering for Gas
Journal of Sound and Vibration,2002,255(3):433-456. Turbines and Power,2015,137(6):065001.
[2] GREEN K,CHAMPNEYS A R,LIEVEN N J. Bifurcation [15] SHAW A D,CHAMPNEYS A R,FRISWELL M I. Asyn-
analysis of an automatic dynamic balancing mechanism for chronous partial contact motion due to internal resonance in
eccentric rotors[J]. Journal of Sound and Vibration, 2006, multiple degree-of-freedom rotordynamics[J]. Proceedings
291(3-5):861-881. Mathematical,Physical,and Engineering Sciences,2016,
[3] RODRIGUES D J,CHAMPNEYS A R,FRISWELL M I, 472(2192):20160303.
et al. Two-plane automatic balancing: a symmetry breaking [16] SHAW A D,CHAMPNEYS A R,FRISWELL M I. Normal
analysis[J]. International Journal of Non-Linear Mechanics, form analysis of bouncing cycles in isotropic rotor stator
2011,46(9):1139-1154. contact problems[J]. International Journal of Mechanical
[4] VAN DE WOUW N,NIJMEIJER H,MIHAJLOVIĆ N. On Sciences,2019,155:83-97.
the coupling between torsional and lateral vibrations in a rotor [17] AKAY M S,SHAW A D,FRISWELL M I. Continuation
dynamic system with set-valued friction[C]//Proceedings of the analysis of a nonlinear rotor system[J]. Nonlinear Dynamics,
ASME 2007 International Design Engineering Technical 2021,105(1):25-43.
Conferences and Computers and Information in Engineering [18] FRISWELL M I, PENNY J E T, GARVEY S D, et al.
Conference. ASME,2007:213-222. Dynamics of Rotating Machines[M]. Cambridge:Cambridge