Page 170 - 《振动工程学报》2025年第9期
P. 170

2100                               振     动     工     程     学     报                     第 38 卷

                                                                                 (       )
                                      y                                   i−1  i−1  i  i−1
                                                                        Q T
                                  θ=0                                     o  o  + Q − Q o  T s
                                                                                    i
                                                                       
                                                                                              i−1    i
                                                                                            , Q  < λQ
                                                                                  i           o      i
                                                  轴瓦1                            Q i
                                                                       
                                                                       
                                                                                 (       )                (6)
                                                                  T in =   i  i−1  i    i
                                                                        λQ T
                                                                       
                                                                       
                                ϕ         Ω                                i       i    i     i−1   i
                    θ 1                                                       o  + Q −λQ T s
                                                                       
                                                                       
                                                                       
                                                                                 Q
                                                                                  i        , Q o  ⩾ λQ i
                                                                                   i
                          φ 1
                                                                式中,T i 表示油膜前端的温度,由从上瓦下游流出
                                                                       n
                       h 1
                                                                的热油与进入到油槽中的新油混合确定;Q o 和                   Q i 分
                                   O b
                                      e 2 V y
                                                      θ s
                                                                别表示上游流出的热油的流量和进入油槽的新油的
                             m 2
                                                         x
                             m 1
                                                                流量;T o 、T s 表示新油的温度;λ 为混合系数。
                                    e 1
                         φ 2          e     V x
                                          O j
                                       W
                                                                1.4    黏温方程
                轴瓦2                                                 润滑油的黏度值受温度的影响较大,会随着温
                               h 2
                                                                度的升高而迅速下降。本文在进行计算时采用的黏
                          θ 2
                                                                温方程为     Rolelands 方程  :
                                                                                     [21]
                         图 2 椭圆轴承油膜厚度示意图                                             (       ) −1.1   
                                                                                      T −138        
                                                                                                    
                                                                           
               Fig. 2 The diagram of oil film thickness for elliptical bearing  η = η 0 exp (lnη 0 +9.67)    −1   (7)
                                                                                                     
                                                                                                   
                                                                                                      
                                                                                       T 0 −138      
              动一周的平均油膜厚度作为计算参数用于后续计算                            式中,η 0 为介质对应温度         T 0  的动力黏度;T 0 为参考
              过程。                                               温度。


              1.2    雷诺方程                                       1.5    轴承动力特性计算
                  对于固定瓦轴承,在假设流体为牛顿流体、层                              将油膜力视为平衡点附近位移和速度的函数,
              流、动载的条件下,滑动轴承油膜的运动可以用如                            利用泰勒级数将其展开,则当轴心在静平衡位置附
              下雷诺方程描述        [18] :                             近做小振动时,油膜力增量可由下式表示                   [22] :
                                                                    {
                            (      )    (      )                       ∆F x = K xx ∆x+ K xy ∆y+C xx ∆˙x+C xy ∆˙y
                               3
                                           3
                          ∂   h ∂p    ∂   h ∂p                                                            (8)
                                    +           =                      ∆F y = K yx ∆x+ K yy ∆y+C yx ∆˙x+C yy ∆˙y
                          ∂x 12η ∂x   ∂y 12η ∂y
                                                       (2)
                          1 ∂(hU)                               式中,ΔF    表示油膜力扰动量;K          和  C  分别表示油膜
                                 +(V y cosϕ+V x sinϕ)
                          2 ∂x                                  刚度和油膜阻尼。基于上式,在平衡位置分别取位
              式中,x=Rθ,R   为轴承半径,θ 为周向角度;η 为润滑                   移小扰动±Δx、±Δy 及速度小扰动±Δ             ˙ x、±Δ ˙ y,并代入
              油黏度;p    为油膜压力;U       为轴颈表面线速度;y 为轴              雷诺方程求解,可以得到:
                                                                                            (1)  (2)
                                                                              (1)
              承轴向坐标;V x 和      V y 分别为轴颈中心沿        x 和  y 方向                F − F (2)     F − F y
                                                                                             y
                                                                                   x
                                                                              x
                                                                      
                                                                      
                                                                       K xx ≈      ,K yx ≈
                                                                      
                                                                      
              的挤压速度。                                                         2|∆x|          2|∆x|        (9)
                                                                      
                                                                                            (3)  (4)
                                                                             (3)  (4)     F − F
                                                                            F − F           y   y
                                                                      
                  在进行数值计算时,瓦块上下游的压力设定为                                       x    x  ,K yy ≈
                                                                       K yx ≈
                                                                      
                                                                      
                                                                              2|∆y|          2|∆y|
              供油压力,瓦块两侧的压力为零,同时采用                    Reynolds                (5)  (6)      (5)  (6)
                                                                           F − F          F − F
                                                                             x   x         y    y
                                                                     
              边界条件作为压力边界条件。                                           C xx ≈       ,C xx ≈
                                                                     
                                                                     
                                                                     

                                                                            2 | ∆˙x |      2 | ∆˙x |    (10)
                                                                                           (7)  (8)
                                                                            (7)  (8)      F − F
                                                                           F − F  x        y    y
                                                                             x
                                                                     
              1.3    能量方程                                                          ,C yy ≈
                                                                      C xy ≈
                                                                     
                                                                     
                                                                             2 | ∆˙y |      2 | ∆˙y |
                  综合考虑计算时间与精度,采用二维                 Cope 能量      式中,F x 和  F y 表示取小扰动后油膜力的计算值。

              方程  [19]  考虑轴承的热效应,具体形式如下:                        1.6    椭圆轴承计算结果
                                          (  ) 2 (  ) 2  
                 ∂T    ∂T    ηU  2   h 3   ∂p    ∂p  
                                          
                                                      
               q x  +q y  =      +            +     (3)         以某         汽轮发电机转子支承轴承为例,计
                                                      
                 ∂x    ∂y   Jρc ρ h  12ηJρc ρ  ∂x  ∂y                    80 MW
                                                                算在转子同步进动过程中的工作参数,表                    1  给出了
                                        3
                                  u s h  h ∂p
                              q x =  −                 (4)
                                   2   12η ∂x                   该支承轴承的具体参数。
                                       3
                                      h ∂p                          图  3  为椭圆轴承油膜特性分布,可以看出,热点
                                q y = −                (5)
                                     12η ∂y                     油膜周向存在明显温差,同时热点滞后于高点约                      40°。
              式中,T 为沿油膜厚度方向的平均温度;J 为热功当                             为验证椭圆轴承热流体润滑模型的正确性,将
              量;ρ 为润滑油的密度;q x 和        q y 分别为计算域各点周            子程序所得计算结果与商业有限元软件                    DYROBES
              向 和 轴 向 的 体 积 流 量; u s 表 示 油 膜 流 动 的 线 速 度 ;      计算结果及试验数据进行对比,如表                 2  所示。
              c ρ 为润滑油的比热容。能量方程的边界条件                 [20]  为:       表  2  中  k 和  c 为油膜的刚度及阻尼系数,可以看
   165   166   167   168   169   170   171   172   173   174   175