Page 383 - 《软件学报》2025年第4期
P. 383

俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署                                                     1789


                 [125]  Mead C. Neuromorphic electronic systems. Proc. of the IEEE, 1990, 78(10): 1629–1636. [doi: 10.1109/5.58356]
                 [126]  Dennard  RH,  Gaensslen  FH,  Yu  HN,  Rideout  VL,  Bassous  E,  Leblanc  AR.  Design  of  ion-implanted  MOSFET’s  with  very  small
                      physical dimensions. IEEE Journal of Solid-state Circuits, 1974, 9(5): 256–268. [doi: 10.1109/JSSC.1974.1050511]
                 [127]  Li H, Ota K, Dong MX. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE Network, 2018,
                      32(1): 96–101. [doi: 10.1109/MNET.2018.1700202]
                 [128]  Chen D, Singh D. Fractal video compression in OpenCL: An evaluation of CPUs, GPUs, and FPGAs as acceleration platforms. In: Proc.
                      of the 18th Asia and South Pacific Design Automation Conf. (ASP-DAC). Yokohama: IEEE, 2013. 297–304. [doi: 10.1109/ASPDAC.
                      2013.6509612]
                 [129]  Boutros A, Yazdanshenas S, Betz V. You cannot improve what you do not measure: FPGA vs. ASIC efficiency gaps for convolutional
                      neural network inference. ACM Trans. on Reconfigurable Technology and Systems (TRETS), 2018, 11(3): 20. [doi: 10.1145/3242898]
                 [130]  Plagwitz P, Hannig F, Teich J, Keszocze O. SNN vs. CNN implementations on FPGAs: An empirical evaluation. In: Proc. of the 20th
                      Int’l Symp. on Applied Reconfigurable Computing. Architectures, Tools, and Applications. Aveiro: Springer, 2024. 3–18. [doi: 10.1007/
                      978-3-031-55673-9_1]
                 [131]  Isik M, Paul A, Varshika ML, Das A. A design methodology for fault-tolerant computing using astrocyte neural networks. In: Proc. of
                      the 19th ACM Int’l Conf. on Computing Frontiers. Turin: ACM, 2022. 169–172. [doi: 10.1145/3528416.3530232]
                      model. AIP Advances, 2019, 9(1): 015324. [doi: 10.1063/1.5052609]
                 [132]  Khodamoradi  A,  Denolf  K,  Kastner  R.  S2N2:  A  FPGA  accelerator  for  streaming  spiking  neural  networks.  In:  Proc.  of  the  2021
                      ACM/SIGDA Int’l Symp. on Field-programmable Gate Arrays. ACM, 2021. 194–205. [doi: 10.1145/3431920.3439283]
                 [133]  Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong P, Jahre M, Vissers K. FINN: A framework for fast, scalable binarized neural
                      network inference. In: Proc. of the 2017 ACM/SIGDA Int’l Symp. on Field-programmable Gate Arrays. Monterey: ACM, 2017. 65–74.
                      [doi: 10.1145/3020078.3021744]
                 [134]  Deng  B,  Fan  YR,  Wang  J,  Yang  SM.  Auditory  perception  architecture  with  spiking  neural  network  and  implementation  on  FPGA.
                      Neural Networks, 2023, 165: 31–42. [doi: 10.1016/j.neunet.2023.05.026]
                 [135]  Cerezuela-Escudero E, Jimenez-Fernandez A, Paz-Vicente R, Dominguez-Morales JP, Dominguez-Morales MJ, Linares-Barranco A.
                      Sound recognition system using spiking and MLP neural networks. In: Proc. of the 25th Int’l Conf. on Artificial Neural Networks and
                      Machine Learning. Barcelona: Springer, 2016. 363–371. [doi: 10.1007/978-3-319-44781-0_43]
                 [136]  Sharifshazileh  M,  Burelo  K,  Sarnthein  J,  Indiveri  G.  An  electronic  neuromorphic  system  for  real-time  detection  of  high  frequency
                      oscillations (HFO) in intracranial EEG. Nature Communications, 2021, 12(1): 3095. [doi: 10.1038/s41467-021-23342-2]
                 [137]  Guerra-Hernandez EI, Espinal A, Batres-Mendoza P, Garcia-Capulin CH, de J Romero-Troncoso R, Rostro-Gonzalez H. A FPGA-based
                      neuromorphic locomotion system for multi-legged robots. IEEE Access, 2017, 5: 8301–8312. [doi: 10.1109/ACCESS.2017.2696985]
                 [138]  Yousefzadeh A, Orchard G, Stromatias E, Serrano-Gotarredona T, Linares-Barranco B. Hybrid neural network, an efficient low-power
                      digital  hardware  implementation  of  event-based  artificial  neural  network.  In:  Proc.  of  the  2018  IEEE  Int’l  Symp.  on  Circuits  and
                      Systems (ISCAS). Florence: IEEE, 2018. 1–5. [doi: 10.1109/ISCAS.2018.8351562]
                 [139]  Ju  XP,  Fang  B,  Yan  R,  Xu  XL,  Tang  HJ.  An  FPGA  implementation  of  deep  spiking  neural  networks  for  low-power  and  fast
                      classification. Neural Computation, 2020, 32(1): 182–204. [doi: 10.1162/neco_a_01245]
                 [140]  Kuang ZB, Wang J, Yang SM, Yi GS, Deng B, Wei XL. Digital implementation of the spiking neural network and its digit recognition.
                      In:  Proc.  of  the  2019  Chinese  Control  and  Decision  Conf.  (CCDC).  Nanchang:  IEEE,  2019.  3621–3625.  [doi:  10.1109/CCDC.
                      2019.8832952]
                 [141]  Neil  D,  Liu  SC.  Minitaur,  an  event-driven  FPGA-based  spiking  network  accelerator.  IEEE  Trans.  on  Very  Large  Scale  Integration
                      (VLSI) Systems, 2014, 22(12): 2621–2628. [doi: 10.1109/TVLSI.2013.2294916]
                 [142]  Wang Q, Li YJ, Shao BT, Dey S, Li P. Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA.
                      Neurocomputing, 2017, 221: 146–158. [doi: 10.1016/j.neucom.2016.09.071]
                 [143]  Zhang CM, Qiao GC, Hu SG, Wang JJ, Liu ZW, Liu YA, Yu Q, Liu Y. A versatile neuromorphic system based on simple neuron

                 [144]  Zhang JL, Wu H, Wei JS, Wei SJ, Chen H. An asynchronous reconfigurable SNN accelerator with event-driven time step update. In:
                      Proc. of the 2019 IEEE Asian Solid-state Circuits Conf. (A-SSCC). Macao: IEEE, 2019. 213–216. [doi: 10.1109/A-SSCC47793.2019.
                      9056903]
                 [145]  Abderrahmane  N,  Miramond  B.  Information  coding  and  hardware  architecture  of  spiking  neural  networks.  In:  Proc.  of  the  22nd
                      Euromicro Conf. on Digital System Design (DSD). Kallithea: IEEE, 2019. 291–298. [doi: 10.1109/DSD.2019.00050]
                 [146]  Guo SS, Wang L, Wang SQ, Deng Y, Yang ZJ, Li SM, Xie ZG, Dou Q. A systolic SNN inference accelerator and its co-optimized
                      software framework. In: Proc. of the 2019 Great Lakes Symp. on VLSI. Tysons Corner: ACM, 2019. 63–68. [doi: 10.1145/3299874.
   378   379   380   381   382   383   384   385   386   387   388