Page 383 - 《软件学报》2025年第4期
P. 383
俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署 1789
[125] Mead C. Neuromorphic electronic systems. Proc. of the IEEE, 1990, 78(10): 1629–1636. [doi: 10.1109/5.58356]
[126] Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous E, Leblanc AR. Design of ion-implanted MOSFET’s with very small
physical dimensions. IEEE Journal of Solid-state Circuits, 1974, 9(5): 256–268. [doi: 10.1109/JSSC.1974.1050511]
[127] Li H, Ota K, Dong MX. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE Network, 2018,
32(1): 96–101. [doi: 10.1109/MNET.2018.1700202]
[128] Chen D, Singh D. Fractal video compression in OpenCL: An evaluation of CPUs, GPUs, and FPGAs as acceleration platforms. In: Proc.
of the 18th Asia and South Pacific Design Automation Conf. (ASP-DAC). Yokohama: IEEE, 2013. 297–304. [doi: 10.1109/ASPDAC.
2013.6509612]
[129] Boutros A, Yazdanshenas S, Betz V. You cannot improve what you do not measure: FPGA vs. ASIC efficiency gaps for convolutional
neural network inference. ACM Trans. on Reconfigurable Technology and Systems (TRETS), 2018, 11(3): 20. [doi: 10.1145/3242898]
[130] Plagwitz P, Hannig F, Teich J, Keszocze O. SNN vs. CNN implementations on FPGAs: An empirical evaluation. In: Proc. of the 20th
Int’l Symp. on Applied Reconfigurable Computing. Architectures, Tools, and Applications. Aveiro: Springer, 2024. 3–18. [doi: 10.1007/
978-3-031-55673-9_1]
[131] Isik M, Paul A, Varshika ML, Das A. A design methodology for fault-tolerant computing using astrocyte neural networks. In: Proc. of
the 19th ACM Int’l Conf. on Computing Frontiers. Turin: ACM, 2022. 169–172. [doi: 10.1145/3528416.3530232]
model. AIP Advances, 2019, 9(1): 015324. [doi: 10.1063/1.5052609]
[132] Khodamoradi A, Denolf K, Kastner R. S2N2: A FPGA accelerator for streaming spiking neural networks. In: Proc. of the 2021
ACM/SIGDA Int’l Symp. on Field-programmable Gate Arrays. ACM, 2021. 194–205. [doi: 10.1145/3431920.3439283]
[133] Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong P, Jahre M, Vissers K. FINN: A framework for fast, scalable binarized neural
network inference. In: Proc. of the 2017 ACM/SIGDA Int’l Symp. on Field-programmable Gate Arrays. Monterey: ACM, 2017. 65–74.
[doi: 10.1145/3020078.3021744]
[134] Deng B, Fan YR, Wang J, Yang SM. Auditory perception architecture with spiking neural network and implementation on FPGA.
Neural Networks, 2023, 165: 31–42. [doi: 10.1016/j.neunet.2023.05.026]
[135] Cerezuela-Escudero E, Jimenez-Fernandez A, Paz-Vicente R, Dominguez-Morales JP, Dominguez-Morales MJ, Linares-Barranco A.
Sound recognition system using spiking and MLP neural networks. In: Proc. of the 25th Int’l Conf. on Artificial Neural Networks and
Machine Learning. Barcelona: Springer, 2016. 363–371. [doi: 10.1007/978-3-319-44781-0_43]
[136] Sharifshazileh M, Burelo K, Sarnthein J, Indiveri G. An electronic neuromorphic system for real-time detection of high frequency
oscillations (HFO) in intracranial EEG. Nature Communications, 2021, 12(1): 3095. [doi: 10.1038/s41467-021-23342-2]
[137] Guerra-Hernandez EI, Espinal A, Batres-Mendoza P, Garcia-Capulin CH, de J Romero-Troncoso R, Rostro-Gonzalez H. A FPGA-based
neuromorphic locomotion system for multi-legged robots. IEEE Access, 2017, 5: 8301–8312. [doi: 10.1109/ACCESS.2017.2696985]
[138] Yousefzadeh A, Orchard G, Stromatias E, Serrano-Gotarredona T, Linares-Barranco B. Hybrid neural network, an efficient low-power
digital hardware implementation of event-based artificial neural network. In: Proc. of the 2018 IEEE Int’l Symp. on Circuits and
Systems (ISCAS). Florence: IEEE, 2018. 1–5. [doi: 10.1109/ISCAS.2018.8351562]
[139] Ju XP, Fang B, Yan R, Xu XL, Tang HJ. An FPGA implementation of deep spiking neural networks for low-power and fast
classification. Neural Computation, 2020, 32(1): 182–204. [doi: 10.1162/neco_a_01245]
[140] Kuang ZB, Wang J, Yang SM, Yi GS, Deng B, Wei XL. Digital implementation of the spiking neural network and its digit recognition.
In: Proc. of the 2019 Chinese Control and Decision Conf. (CCDC). Nanchang: IEEE, 2019. 3621–3625. [doi: 10.1109/CCDC.
2019.8832952]
[141] Neil D, Liu SC. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 2014, 22(12): 2621–2628. [doi: 10.1109/TVLSI.2013.2294916]
[142] Wang Q, Li YJ, Shao BT, Dey S, Li P. Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA.
Neurocomputing, 2017, 221: 146–158. [doi: 10.1016/j.neucom.2016.09.071]
[143] Zhang CM, Qiao GC, Hu SG, Wang JJ, Liu ZW, Liu YA, Yu Q, Liu Y. A versatile neuromorphic system based on simple neuron
[144] Zhang JL, Wu H, Wei JS, Wei SJ, Chen H. An asynchronous reconfigurable SNN accelerator with event-driven time step update. In:
Proc. of the 2019 IEEE Asian Solid-state Circuits Conf. (A-SSCC). Macao: IEEE, 2019. 213–216. [doi: 10.1109/A-SSCC47793.2019.
9056903]
[145] Abderrahmane N, Miramond B. Information coding and hardware architecture of spiking neural networks. In: Proc. of the 22nd
Euromicro Conf. on Digital System Design (DSD). Kallithea: IEEE, 2019. 291–298. [doi: 10.1109/DSD.2019.00050]
[146] Guo SS, Wang L, Wang SQ, Deng Y, Yang ZJ, Li SM, Xie ZG, Dou Q. A systolic SNN inference accelerator and its co-optimized
software framework. In: Proc. of the 2019 Great Lakes Symp. on VLSI. Tysons Corner: ACM, 2019. 63–68. [doi: 10.1145/3299874.