Page 387 - 《软件学报》2025年第4期
P. 387

俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署                                                     1793


                 [209]  Thomas D, Luk W. FPGA accelerated simulation of biologically plausible spiking neural networks. In: Proc. of the 17th IEEE Symp. on
                      Field Programmable Custom Computing Machines. Napa: IEEE, 2009. 45–52. [doi: 10.1109/FCCM.2009.46]
                 [210]  Garey MR, Johnson DS, Stockmeyer L. Some simplified NP-complete problems. In: Proc. of the 6th Annual ACM Symp. on Theory of
                      Computing. Seattle: ACM, 1974. 47–63. [doi: 10.1145/800119.803884]
                 [211]  Balaji A, Das A, Wu YF, Huynh K, Dell’Anna FG, Indiveri G, Krichmar JL, Dutt ND, Schaafsma S, Catthoor F. Mapping spiking
                      neural networks to neuromorphic hardware. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2020, 28(1): 76–86. [doi: 10.
                      1109/TVLSI.2019.2951493]
                 [212]  Zhang LM, Li SM, Qu LH, Kang ZY, Wang SY, Chen JH, Wang L. MAMAP: Congestion relieved memetic algorithm based mapping
                      method  for  mapping  large-scale  SNNs  onto  NoC-based  neuromorphic  hardware.  In:  Proc.  of  the  22nd  IEEE  Int’l  Conf.  on  High
                      Performance Computing and Communications; the 18th IEEE Int’l Conf. on Smart City; the 6th IEEE Int’l Conf. on Data Science and
                      Systems (HPCC/SmartCity/DSS). Yanuca Island: IEEE, 2020. 640–647. [doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00082]
                 [213]  Kennedy  J,  Eberhart  R.  Particle  swarm  optimization.  In:  Proc.  of  the  1995  Int’l  Conf.  on  Neural  Networks.  Perth:  IEEE,  1995.
                      1942–1948. [doi: 10.1109/ICNN.1995.488968]
                 [214]  Glover F, Laguna M. Tabu Search. New York: Springer, 1998. [doi: 10.1007/978-1-4615-6089-0]
                 [215]  Li SM, Guo SS, Zhang LM, Kang ZY, Wang SY, Shi W, Wang L, Xu WX. SNEAP: A fast and efficient toolchain for mapping large-

                      scale spiking neural network onto NoC-based neuromorphic platform. In: Proc. of the 2020 on Great Lakes Symp. on VLSI. ACM,
                      2020. 9–14. [doi: 10.1145/3386263.3406900]
                 [216]  Xiao C, Chen JH, Wang L. Optimal mapping of spiking neural network to neuromorphic hardware for edge-AI. Sensors, 2022, 22(19):
                      7248. [doi: 10.3390/s22197248]
                 [217]  Galluppi F, Davies S, Rast A, Sharp T, Plana LA, Furber S. A hierachical configuration system for a massively parallel neural hardware
                      platform. In: Proc. of the 9th Conf. on Computing Frontiers. Cagliari: ACM, 2012. 183–192. [doi: 10.1145/2212908.2212934]
                 [218]  Esser SK, Merolla PA, Arthur JV, Cassidy AS, Appuswamy R, Andreopoulos A, Berg DJ, McKinstry JL, Melano T, Barch DR, di
                      Nolfo  C,  Datta  P,  Amir  A,  Taba  B,  Flickner  MD,  Modha  DS.  Convolutional  networks  for  fast,  energy-efficient  neuromorphic
                      computing. Proc. of the National Academy of Sciences of the United States of America, 2016, 113(41): 11441–11446. [doi: 10.1073/
                      pnas.1604850113]
                 [219]  Deng L, Wang GR, Li GQ, Li SC, Liang L, Zhu MH, Wu YJ, Yang ZY, Zou Z, Pei J, Wu ZZ, Hu X, Ding YF, He W, Xie Y, Shi LP.
                      TianJic:  A  unified  and  scalable  chip  bridging  spike-based  and  continuous  neural  computation.  IEEE  Journal  of  Solid-state  Circuits,
                      2020, 55(8): 2228–2246. [doi: 10.1109/JSSC.2020.2970709]
                 [220]  Rueckauer B, Bybee C, Goettsche R, Singh Y, Mishra J, Wild A. NxTF: An API and compiler for deep spiking neural networks on Intel
                      Loihi. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2022, 18(3): 48. [doi: 10.1145/3501770]
                 [221]  Zou CL, Cui XX, Chen G, Feng S, Liu KF, Wang XN, Wang Y. Modular building blocks for mapping spiking neural networks onto a
                      programmable neuromorphic processor. Microelectronics Journal, 2022, 129: 105612. [doi: 10.1016/j.mejo.2022.105612]
                 [222]  Song  SH,  Chong  H,  Balaji  A,  Das  A,  Shackleford  J,  Kandasamy  N.  DFSynthesizer:  Dataflow-based  synthesis  of  spiking  neural
                      networks to neuromorphic hardware. ACM Trans. on Embedded Computing Systems (TECS), 2022, 21(3): 27. [doi: 10.1145/3479156]
                 [223]  Rahiminejad E, Azad F, Parvizi-Fard A, Amiri M, Linares-Barranco B. A neuromorphic CMOS circuit with self-repairing capability.
                      IEEE Trans. on Neural Networks and Learning Systems, 2022, 33(5): 2246–2258. [doi: 10.1109/TNNLS.2020.3045019]
                 [224]  Timcheck J, Kadmon J, Boahen K, Ganguli S. Optimal noise level for coding with tightly balanced networks of spiking neurons in the
                      presence of transmission delays. PLoS Computational Biology, 2022, 18(10): e1010593. [doi: 10.1371/journal.pcbi.1010593]
                 [225]  Srinivasan S, Stevens CF. Robustness and fault tolerance make brains harder to study. BMC Biology, 2011, 9(1): 46. [doi: 10.1186/1741-
                      7007-9-46]
                 [226]  Maass W. Noise as a resource for computation and learning in networks of spiking neurons. Proc. of the IEEE, 2014, 102(5): 860–880.
                      [doi: 10.1109/JPROC.2014.2310593]
                 [227]  Torres-Huitzil C, Girau B. Fault and error tolerance in neural networks: A review. IEEE Access, 2017, 5: 17322–17341. [doi: 10.1109/
                      ACCESS.2017.2742698]
                 [228]  Shukla  M,  Kumar  A,  Mahajan  P.  Reliable  fault  tolerance  and  recovery  for  VLSI  systems.  In:  Proc.  of  the  2024  Int’l  Conf.  on
                      Optimization  Computing  and  Wireless  Communication  (ICOCWC).  Debre  Tabor:  IEEE,  2024.  1–6.  [doi:  10.1109/ICOCWC60930.
                      2024.10470561]
                 [229]  Mahdiani HR, Fakhraie SM, Lucas C. Relaxed fault-tolerant hardware implementation of neural networks in the presence of multiple
                      transient errors. IEEE Trans. on Neural Networks and Learning Systems, 2012, 23(8): 1215–1228. [doi: 10.1109/TNNLS.2012.2199517]
                 [230]  Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose GS, Plank JS. A survey of neuromorphic computing and neural
   382   383   384   385   386   387   388   389   390   391   392