Page 387 - 《软件学报》2025年第4期
P. 387
俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署 1793
[209] Thomas D, Luk W. FPGA accelerated simulation of biologically plausible spiking neural networks. In: Proc. of the 17th IEEE Symp. on
Field Programmable Custom Computing Machines. Napa: IEEE, 2009. 45–52. [doi: 10.1109/FCCM.2009.46]
[210] Garey MR, Johnson DS, Stockmeyer L. Some simplified NP-complete problems. In: Proc. of the 6th Annual ACM Symp. on Theory of
Computing. Seattle: ACM, 1974. 47–63. [doi: 10.1145/800119.803884]
[211] Balaji A, Das A, Wu YF, Huynh K, Dell’Anna FG, Indiveri G, Krichmar JL, Dutt ND, Schaafsma S, Catthoor F. Mapping spiking
neural networks to neuromorphic hardware. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2020, 28(1): 76–86. [doi: 10.
1109/TVLSI.2019.2951493]
[212] Zhang LM, Li SM, Qu LH, Kang ZY, Wang SY, Chen JH, Wang L. MAMAP: Congestion relieved memetic algorithm based mapping
method for mapping large-scale SNNs onto NoC-based neuromorphic hardware. In: Proc. of the 22nd IEEE Int’l Conf. on High
Performance Computing and Communications; the 18th IEEE Int’l Conf. on Smart City; the 6th IEEE Int’l Conf. on Data Science and
Systems (HPCC/SmartCity/DSS). Yanuca Island: IEEE, 2020. 640–647. [doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00082]
[213] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc. of the 1995 Int’l Conf. on Neural Networks. Perth: IEEE, 1995.
1942–1948. [doi: 10.1109/ICNN.1995.488968]
[214] Glover F, Laguna M. Tabu Search. New York: Springer, 1998. [doi: 10.1007/978-1-4615-6089-0]
[215] Li SM, Guo SS, Zhang LM, Kang ZY, Wang SY, Shi W, Wang L, Xu WX. SNEAP: A fast and efficient toolchain for mapping large-
scale spiking neural network onto NoC-based neuromorphic platform. In: Proc. of the 2020 on Great Lakes Symp. on VLSI. ACM,
2020. 9–14. [doi: 10.1145/3386263.3406900]
[216] Xiao C, Chen JH, Wang L. Optimal mapping of spiking neural network to neuromorphic hardware for edge-AI. Sensors, 2022, 22(19):
7248. [doi: 10.3390/s22197248]
[217] Galluppi F, Davies S, Rast A, Sharp T, Plana LA, Furber S. A hierachical configuration system for a massively parallel neural hardware
platform. In: Proc. of the 9th Conf. on Computing Frontiers. Cagliari: ACM, 2012. 183–192. [doi: 10.1145/2212908.2212934]
[218] Esser SK, Merolla PA, Arthur JV, Cassidy AS, Appuswamy R, Andreopoulos A, Berg DJ, McKinstry JL, Melano T, Barch DR, di
Nolfo C, Datta P, Amir A, Taba B, Flickner MD, Modha DS. Convolutional networks for fast, energy-efficient neuromorphic
computing. Proc. of the National Academy of Sciences of the United States of America, 2016, 113(41): 11441–11446. [doi: 10.1073/
pnas.1604850113]
[219] Deng L, Wang GR, Li GQ, Li SC, Liang L, Zhu MH, Wu YJ, Yang ZY, Zou Z, Pei J, Wu ZZ, Hu X, Ding YF, He W, Xie Y, Shi LP.
TianJic: A unified and scalable chip bridging spike-based and continuous neural computation. IEEE Journal of Solid-state Circuits,
2020, 55(8): 2228–2246. [doi: 10.1109/JSSC.2020.2970709]
[220] Rueckauer B, Bybee C, Goettsche R, Singh Y, Mishra J, Wild A. NxTF: An API and compiler for deep spiking neural networks on Intel
Loihi. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2022, 18(3): 48. [doi: 10.1145/3501770]
[221] Zou CL, Cui XX, Chen G, Feng S, Liu KF, Wang XN, Wang Y. Modular building blocks for mapping spiking neural networks onto a
programmable neuromorphic processor. Microelectronics Journal, 2022, 129: 105612. [doi: 10.1016/j.mejo.2022.105612]
[222] Song SH, Chong H, Balaji A, Das A, Shackleford J, Kandasamy N. DFSynthesizer: Dataflow-based synthesis of spiking neural
networks to neuromorphic hardware. ACM Trans. on Embedded Computing Systems (TECS), 2022, 21(3): 27. [doi: 10.1145/3479156]
[223] Rahiminejad E, Azad F, Parvizi-Fard A, Amiri M, Linares-Barranco B. A neuromorphic CMOS circuit with self-repairing capability.
IEEE Trans. on Neural Networks and Learning Systems, 2022, 33(5): 2246–2258. [doi: 10.1109/TNNLS.2020.3045019]
[224] Timcheck J, Kadmon J, Boahen K, Ganguli S. Optimal noise level for coding with tightly balanced networks of spiking neurons in the
presence of transmission delays. PLoS Computational Biology, 2022, 18(10): e1010593. [doi: 10.1371/journal.pcbi.1010593]
[225] Srinivasan S, Stevens CF. Robustness and fault tolerance make brains harder to study. BMC Biology, 2011, 9(1): 46. [doi: 10.1186/1741-
7007-9-46]
[226] Maass W. Noise as a resource for computation and learning in networks of spiking neurons. Proc. of the IEEE, 2014, 102(5): 860–880.
[doi: 10.1109/JPROC.2014.2310593]
[227] Torres-Huitzil C, Girau B. Fault and error tolerance in neural networks: A review. IEEE Access, 2017, 5: 17322–17341. [doi: 10.1109/
ACCESS.2017.2742698]
[228] Shukla M, Kumar A, Mahajan P. Reliable fault tolerance and recovery for VLSI systems. In: Proc. of the 2024 Int’l Conf. on
Optimization Computing and Wireless Communication (ICOCWC). Debre Tabor: IEEE, 2024. 1–6. [doi: 10.1109/ICOCWC60930.
2024.10470561]
[229] Mahdiani HR, Fakhraie SM, Lucas C. Relaxed fault-tolerant hardware implementation of neural networks in the presence of multiple
transient errors. IEEE Trans. on Neural Networks and Learning Systems, 2012, 23(8): 1215–1228. [doi: 10.1109/TNNLS.2012.2199517]
[230] Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose GS, Plank JS. A survey of neuromorphic computing and neural