Page 382 - 《软件学报》2025年第4期
P. 382

1788                                                       软件学报  2025  年第  36  卷第  4  期


                 [103]  Saleh AY, Hameed HNBA, Salleh MNM. A novel hybrid algorithm of differential evolution with evolving spiking neural network for
                      pre-synaptic neurons optimization. Int’l Journal of Advances in Soft Computing and Its Applications, 2014, 6(1): 1–16.
                 [104]  Schaffer JD. Evolving spiking neural networks: A novel growth algorithm corrects the teacher. In: Proc. of the 2015 IEEE Symp. on
                      Computational  Intelligence  for  Security  and  Defense  Applications  (CISDA).  Verona:  IEEE,  2015.  1–8.  [doi:  10.1109/CISDA.
                      2015.7208630]
                 [105]  Vázquez  RA.  Izhikevich  neuron  model  and  its  application  in  pattern  recognition.  Australian  Journal  of  Intelligent  Information
                      Processing Systems, 2010, 11(1): 35–40.
                 [106]  López-Vázquez G, Ornelas-Rodríguez M, Espinal A, Soria-Alcaraz JA, Rojas-Domínguez A, PugaSoberanes HJ, Carpio JM, Rostro-
                      González  H.  Evolving  random  topologies  of  spiking  neural  networks  for  pattern  recognition.  Computer  Science  and  Information
                      Technology, 2019, 9(7): 41–56. [doi: 10.5121/csit.2019.90704]
                 [107]  Yusuf  ZM,  Hamed  HNA,  Yusuf  LM,  Isa  MA.  Evolving  spiking  neural  network  (ESNN)  and  harmony  search  algorithm  (HSA)  for
                      parameter optimization. In: Proc. of the 6th Int’l Conf. on Electrical Engineering and Informatics (ICEEI). Langkawi: IEEE, 2017. 1–6.
                      [doi: 10.1109/ICEEI.2017.8312365]
                 [108]  Zhang AG, Han Y, Niu YZ, Gao YM, Chen ZZ, Zhao K. Self-evolutionary neuron model for fast-response spiking neural networks.
                      IEEE Trans. on Cognitive and Developmental Systems, 2022, 14(4): 1766–1777. [doi: 10.1109/TCDS.2021.3139444]
                 [109]  Abadi M, Barham P, Chen JM, et al. TensorFlow: A system for large-scale machine learning. In: Proc. of the 12th USENIX Symp. on
                      Operating Systems Design and Implementation (OSDI 16). Savannah: USENIX Association, 2016. 265–283.
                 [110]  Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library. In: Proc. of the 33rd Int’l
                      Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 8026–8037.
                 [111]  Jia YQ, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional architecture for fast
                      feature embedding. In: Proc. of the 22nd ACM Int’l Conf. on Multimedia. Orlando: ACM, 2014. 675–678. [doi: 10.1145/2647868.
                      2654889]
                 [112]  Hazan H, Saunders DJ, Khan H, Patel D, Sanghavi DT, Siegelmann HT, Kozma R. BindsNET: A machine learning-oriented spiking
                      neural networks library in Python. Frontiers in Neuroinformatics, 2018, 12: 89. [doi: 10.3389/fninf.2018.00089]
                 [113]  Fang W, Chen YQ, Ding JH, Yu ZF, Masquelier T, Chen D, Huang LW, Zhou HH, Li GQ, Tian YH. SpikingJelly: An open-source
                      machine learning infrastructure platform for spike-based intelligence. Science Advances, 2023, 9(40): eadi1480. [doi: 10.1126/sciadv.
                      adi1480]
                 [114]  Gütig R, Sompolinsky H. The tempotron: A neuron that learns spike timing-based decisions. Nature Neuroscience, 2006, 9(3): 420–428.
                      [doi: 10.1038/nn1643]
                 [115]  Mozafari  M,  Ganjtabesh  M,  Nowzari-Dalini  A,  Masquelier  T.  SpykeTorch:  Efficient  simulation  of  convolutional  spiking  neural
                      networks with at most one spike per neuron. Frontiers in Neuroscience, 2019, 13: 625. [doi: 10.3389/fnins.2019.00625]
                 [116]  Frémaux  N,  Gerstner  W.  Neuromodulated  spike-timing-dependent  plasticity,  and  theory  of  three-factor  learning  rules.  Frontiers  in
                      Neural Circuits, 2016, 9: 85. [doi: 10.3389/fncir.2015.00085]
                 [117]  Javanshir A, Nguyen TT, Mahmud MAP, Kouzani AZ. Advancements in algorithms and neuromorphic hardware for spiking neural
                      networks. Neural Computation, 2022, 34(6): 1289–1328. [doi: 10.1162/neco_a_01499]
                 [118]  Gewaltig MO, Diesmann M. Nest (neural simulation tool). Scholarpedia, 2007, 2(4): 1430. [doi: 10.4249/scholarpedia.1430]
                 [119]  Bekolay T, Bergstra J, Hunsberger E, Dewolf T, Stewart TC, Rasmussen D, Choo X, Voelker A, Eliasmith C. Nengo: A Python tool for
                      building large-scale functional brain models. Frontiers in Neuroinformatics, 2014, 7: 48. [doi: 10.3389/fninf.2013.00048]
                 [120]  Fidjeland AK, Roesch EB, Shanahan MP, Luk W. NeMo: A platform for neural modelling of spiking neurons using GPUs. In: Proc. of
                      the 20th IEEE Int’l Conf. on Application-specific Systems, Architectures and Processors. Boston: IEEE, 2009. 137–144. [doi: 10.1109/
                      ASAP.2009.24]
                 [121]  Yavuz E, Turner J, Nowotny T. GeNN: A code generation framework for accelerated brain simulations. Scientific Reports, 2016, 6(1):
                      18854. [doi: 10.1038/srep18854]
                 [122]  Stimberg M, Brette R, Goodman DFM. Brian 2, an intuitive and efficient neural simulator. eLife, 2019, 8: e47314. [doi: 10.7554/eLife.
                      47314]
                 [123]  Niedermeier L, Chen KX, Xing JW, Das A, Kopsick J, Scott E, Sutton N, Weber K, Dutt N, Krichmar JL. CARLsim 6: An open source
                      library  for  large-scale,  biologically  detailed  spiking  neural  network  simulation.  In:  Proc.  of  the  2022  Int’l  Joint  Conf.  on  Neural
                      Networks (IJCNN). Padua: IEEE, 2022. 1–10. [doi: 10.1109/IJCNN55064.2022.9892644]
                 [124]  Xu XW, Ding YK, Hu SX, Niemier M, Cong J, Hu Y, Shi YY. Scaling for edge inference of deep neural networks. Nature Electronics,
                      2018, 1(4): 216–222. [doi: 10.1038/s41928-018-0059-3]
   377   378   379   380   381   382   383   384   385   386   387