Page 378 - 《软件学报》2025年第4期
P. 378

1784                                                       软件学报  2025  年第  36  卷第  4  期


                 [13]  Cybenko  G.  Approximation  by  superpositions  of  a  sigmoidal  function.  Mathematics  of  Control,  Signals  and  Systems,  1989,  2(4):
                      303–314. [doi: 10.1007/BF02551274]
                 [14]  Funahashi KI. On the approximate realization of continuous mappings by neural networks. Neural Networks, 1989, 2(3): 183–192. [doi:
                      10.1016/0893-6080(89)90003-8]
                 [15]  Hornik  K,  Stinchcombe  M,  White  H.  Multilayer  feedforward  networks  are  universal  approximators.  Neural  Networks,  1989,  2(5):
                      359–366. [doi: 10.1016/0893-6080(89)90020-8]
                 [16]  Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533–536. [doi:
                      10.1038/323533a0]
                 [17]  Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527–1554. [doi: 10.
                      1162/neco.2006.18.7.1527]
                 [18]  Brown TB, Mann B, Ryder N, et al. Language models are few-shot learners. In: Proc. of the 34th Int’l Conf. on Neural Information
                      Processing Systems. Vancouver: Curran Associates Inc., 2020. 1877–1901.
                 [19]  Zhang  ML,  Wang  JD,  Wu  JB,  Belatreche  A,  Amornpaisannon  B,  Zhang  ZX,  Miriyala  VPK,  Qu  H,  Chua  Y,  Carlson  TE,  Li  HZ.
                      Rectified linear postsynaptic potential function for backpropagation in deep spiking neural networks. IEEE Trans. on Neural Networks
                      and Learning Systems, 2022, 33(5): 1947–1958. [doi: 10.1109/TNNLS.2021.3110991]

                 [20]  Maass W. Networks of spiking neurons: The third generation of neural network models. Neural Networks, 1997, 10(9): 1659–1671.
                      [doi: 10.1016/S0893-6080(97)00011-7]
                 [21]  Han S, Pool J, Tran J, Dally WJ. Learning both weights and connections for efficient neural networks. In: Proc. of the 28th Int’l Conf.
                      on Neural Information Processing Systems. Montreal: MIT Press, 2015. 1135–1143.
                 [22]  Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A. Deep learning in spiking neural networks. Neural Networks, 2019,
                      111: 47–63. [doi: 10.1016/j.neunet.2018.12.002]
                 [23]  Stone  JV.  Principles  of  Neural  Information  Theory:  Computational  Neuroscience  and  Metabolic  Efficiency.  Sheffield:  Sebtel  Press,
                      2018.
                 [24]  Wang B, Xue C, Liu H, Li X, Yin AR, Feng ZY, Kong YY, Xiong TZ, Hsu H, Zhou YL, Guo A, Wang YF, Yang J, Si X. SNNIM: A
                      10T-SRAM based spiking-neural-network-in-memory architecture with capacitance computation. In: Proc. of the 2022 IEEE Int’l Symp.
                      on Circuits and Systems (ISCAS). Austin: IEEE, 2022. 3383–3387. [doi: 10.1109/ISCAS48785.2022.9937272]
                 [25]  Pan XQ, Luo W, Shuai Y, Hu SG, Luo WB, Qiao GC, Zhou T, Wang JJ, Xie Q, Huang ST, Liu Y, Wu CG, Zhang WL. Hardware
                      implementation  of  edge  neural  network  computing  for  sensor  with  memristors  based  on  single-crystalline  LiNbO 3   thin  film.  IEEE
                      Sensors Journal, 2023, 23(8): 8526–8534. [doi: 10.1109/JSEN.2023.3248123]
                 [26]  Lee C, Sarwar SS, Panda P, Srinivasan G, Roy K. Enabling spike-based backpropagation for training deep neural network architectures.
                      Frontiers in Neuroscience, 2020, 14: 497482. [doi: 10.3389/fnins.2020.00119]
                 [27]  Wang YC, Liu HW, Zhang ML, Luo XL, Qu H. A universal ANN-to-SNN framework for achieving high accuracy and low latency deep
                      spiking neural networks. Neural Networks, 2024, 174: 106244. [doi: 10.1016/j.neunet.2024.106244]
                 [28]  Lien HH, Chang TS. Sparse compressed spiking neural network accelerator for object detection. IEEE Trans. on Circuits and Systems I:
                      Regular Papers, 2022, 69(5): 2060–2069. [doi: 10.1109/TCSI.2022.3149006]
                 [29]  Liu KF, Cui XX, Ji X, Kuang YS, Zou CL, Zhong Y, Xiao KL, Wang Y. Real-time target tracking system with spiking neural networks
                      implemented on neuromorphic chips. IEEE Trans. on Circuits and Systems II: Express Briefs, 2023, 70(4): 1590–1594. [doi: 10.1109/
                      TCSII.2022.3227121]
                 [30]  Feng LC, Zhang YQ, Zhu ZM. An efficient multilayer spiking convolutional neural network processor for object recognition with low
                      bitwidth and channel-level parallelism. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 69(12): 5129–5133. [doi: 10.1109/
                      TCSII.2022.3207989]
                 [31]  Huang  JQ,  Serb  A,  Stathopoulos  S,  Prodromakis  T.  Text  classification  in  memristor-based  spiking  neural  networks.  Neuromorphic
                      Computing and Engineering, 2023, 3(1): 014003. [doi: 10.1088/2634-4386/acb2f0]
                 [32]  Zou  CL,  Cui  XX,  Kuang  YS,  Wang  Y,  Wang  XN.  A  hybrid  spiking  recurrent  neural  network  on  hardware  for  efficient  emotion
                      recognition.  In:  Proc.  of  the  4th  IEEE  Int’l  Conf.  on  Artificial  Intelligence  Circuits  and  Systems  (AICAS).  Incheon:  IEEE,  2022.
                      332–335. [doi: 10.1109/AICAS54282.2022.9869950]
                 [33]  Kumar N, Tang G, Yoo R, Michmizos KP. Decoding EEG with spiking neural networks on neuromorphic hardware. Trans. on Machine
                      Learning Research, 2022, (6): 1–12.
                 [34]  Mao RX, Li SX, Zhang ZM, Xia ZH, Xiao JB, Zhu ZX, Liu JH, Shan WW, Chang L, Zhou J. An ultra-energy-efficient and high
                      accuracy ECG classification processor with SNN inference assisted by on-chip ANN learning. IEEE Trans. on Biomedical Circuits and
   373   374   375   376   377   378   379   380   381   382   383