Page 379 - 《软件学报》2025年第4期
P. 379

俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署                                                     1785


                      Systems, 2022, 16(5): 832–841. [doi: 10.1109/TBCAS.2022.3185720]
                 [35]  Chu HM, Yan YL, Gan LJ, Jia H, Qian LY, Huan YX, Zheng LR, Zou Z. A neuromorphic processing system with spike-driven SNN
                      processor  for  wearable  ECG  classification.  IEEE  Trans.  on  Biomedical  Circuits  and  Systems,  2022,  16(4):  511–523.  [doi:  10.1109/
                      TBCAS.2022.3189364]
                 [36]  Roggen  D,  Hofmann  S,  Thoma  Y,  Floreano  D.  Hardware  spiking  neural  network  with  run-time  reconfigurable  connectivity  in  an
                      autonomous robot. In: Proc. of the 2003 NASA/DoD Conf. on Evolvable Hardware. Chicago: IEEE, 2003. 189–198. [doi: 10.1109/EH.
                      2003.1217666]
                 [37]  Johnson AP, Liu JX, Millard AG, Karim S, Tyrrell AM, Harkin J, Timmis J, McDaid LJ, Halliday DM. Homeostatic fault tolerance in
                      spiking  neural  networks:  A  dynamic  hardware  perspective.  IEEE  Trans.  on  Circuits  and  Systems  I:  Regular  Papers,  2018,  65(2):
                      687–699. [doi: 10.1109/TCSI.2017.2726763]
                 [38]  Pfeiffer M, Pfeil T. Deep learning with spiking neurons: Opportunities and challenges. Frontiers in Neuroscience, 2018, 12: 409662.
                      [doi: 10.3389/fnins.2018.00774]
                 [39]  Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The
                      Journal of Physiology, 1952, 117(4): 500–544. [doi: 10.1113/jphysiol.1952.sp004764]
                 [40]  Gerstner W, Kistler WM. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press,
                      2002. [doi: 10.1017/CBO9780511815706]
                 [41]  Paugam-Moisy H, Bohte S. Computing with spiking neuron networks. In: Rozenberg G, Bäck T, Kok JN, eds. Handbook of Natural
                      Computing. Heidelberg: Springer, 2012. 335–376. [doi: 10.1007/978-3-540-92910-9_10]
                 [42]  Nitzsche S, Pachideh B, Luhn N, Becker J. Digital hardware implementation of optimized spiking neurons. In: Proc. of the 2021 Int’l
                      Conf. on Neuromorphic Computing (ICNC). Wuhan: IEEE, 2021. 126–134. [doi: 10.1109/ICNC52316.2021.9608391]
                 [43]  Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge: MIT Press,
                      2005.
                 [44]  Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans. on Neural Networks, 2004, 15(5): 1063–1070. [doi: 10.
                      1109/TNN.2004.832719]
                 [45]  Aamir SA, Stradmann Y, Müller P, Pehle C, Hartel A, Grubl A, Schemmel J, Meier K. An accelerated LIF neuronal network array for a
                      large-scale mixed-signal neuromorphic architecture. IEEE Trans. on Circuits and Systems I: Regular Papers, 2018, 65(12): 4299–4312.
                      [doi: 10.1109/TCSI.2018.2840718]
                 [46] Systems, 2018, 29(7): 3227–3235. [doi: 10.1109/TNNLS.2017.2726060]
                      Izhikevich EM. Simple model of spiking neurons. IEEE Trans. on Neural Networks, 2003, 14(6): 1569–1572. [doi: 10.1109/TNN.2003.
                      820440]
                 [47]  Heidarpur M, Ahmadi A, Ahmadi M, Rahimi Azghadi M. CORDIC-SNN: On-FPGA STDP learning with izhikevich neurons. IEEE
                      Trans. on Circuits and Systems I: Regular Papers, 2019, 66(7): 2651–2661. [doi: 10.1109/TCSI.2019.2899356]
                 [48]  Jolivet R, Timothy J, Gerstner W. The spike response model: A framework to predict neuronal spike trains. In: Proc. of the 2003 Joint
                      Int’l Conf. on Artificial Neural Networks and Neural Information Processing. Istanbul: Springer, 2003. 846–853. [doi: 10.1007/3-540-
                      44989-2_101]
                 [49]  Qiao GC, Ning N, Zuo Y, Hu SG, Yu Q, Liu Y. Direct training of hardware-friendly weight binarized spiking neural network with
                      surrogate gradient learning towards spatio-temporal event-based dynamic data recognition. Neurocomputing, 2021, 457: 203–213. [doi:
                      10.1016/j.neucom.2021.06.070]
                 [50]  Diehl  PU,  Cook  M.  Unsupervised  learning  of  digit  recognition  using  spike-timing-dependent  plasticity.  Frontiers  in  Computational
                      Neuroscience, 2015, 9: 99. [doi: 10.3389/fncom.2015.00099]
                 [51]  Mostafa H. Supervised learning based on temporal coding in spiking neural networks. IEEE Trans. on Neural Networks and Learning

                 [52]  Rueckauer B, Lungu IA, Hu YH, Pfeiffer M, Liu SC. Conversion of continuous-valued deep networks to efficient event-driven networks
                      for image classification. Frontiers in Neuroscience, 2017, 11: 682. [doi: 10.3389/fnins.2017.00682]
                 [53]  Panchapakesan  S,  Fang  ZM,  Li  J.  SyncNN:  Evaluating  and  accelerating  spiking  neural  networks  on  FPGAs.  ACM  Trans.  on
                      Reconfigurable Technology and Systems, 2022, 15(4): 48. [doi: 10.1145/3514253]
                 [54]  Im J, Kim J, Yoo HN, Baek JW, Kwon D, Oh S, Kim J, Hwang J, Park BG, Lee JH. On-chip trainable spiking neural networks using
                      time-to-first-spike encoding. IEEE Access, 2022, 10: 31263–31272. [doi: 10.1109/ACCESS.2022.3160271]
                 [55]  Bohte SM, Kok JN, La Poutré H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 2002,
                      48(1–4): 17–37. [doi: 10.1016/S0925-2312(01)00658-0]
                 [56]  Yu  Q,  Tang  HJ,  Tan  KC,  Yu  HY.  A  brain-inspired  spiking  neural  network  model  with  temporal  encoding  and  learning.
   374   375   376   377   378   379   380   381   382   383   384