Page 384 - 《软件学报》2025年第4期
P. 384
1790 软件学报 2025 年第 36 卷第 4 期
3317966]
[147] Losh M, Llamocca D. A low-power spike-like neural network design. Electronics, 2019, 8(12): 1479. [doi: 10.3390/electronics8121479]
[148] Han JH, Li ZL, Zheng WM, Zhang YH. Hardware implementation of spiking neural networks on FPGA. Tsinghua Science and
Technology, 2020, 25(4): 479–486. [doi: 10.26599/TST.2019.9010019]
[149] Fang HW, Mei ZD, Shrestha A, Zhao ZY, Li YL, Qiu QR. Encoding, model, and architecture: Systematic optimization for spiking
neural network in FPGAs. In: Proc. of the 2020 IEEE/ACM Int’l Conf. on Computer-aided Design. San Diego: IEEE, 2020. 1–9.
[150] Wang SQ, Wang L, Deng Y, Yang ZJ, Guo SS, Kang ZY, Guo YF, Xu WX. SIES: A novel implementation of spiking convolutional
neural network inference engine on field-programmable gate array. Journal of Computer Science and Technology, 2020, 35(2):
475–489. [doi: 10.1007/s11390-020-9686-z]
[151] Aung MTL, Qu CP, Yang LW, Luo T, Goh RSM, Wong WF. DeepFire: Acceleration of convolutional spiking neural network on
modern field programmable gate arrays. In: Proc. of the 31st Int’l Conf. on Field-programmable Logic and Applications (FPL). Dresden:
IEEE, 2021. 28–32. [doi: 10.1109/FPL53798.2021.00013]
[152] Li SX, Zhang ZM, Mao RX, Xiao JB, Chang L, Zhou J. A fast and energy-efficient SNN processor with adaptive clock/event-driven
computation scheme and online learning. IEEE Trans. on Circuits and Systems I: Regular Papers, 2021, 68(4): 1543–1552. [doi: 10.1109/
TCSI.2021.3052885]
[153] Zheng HL, Guo YH, Yang XY, Xiao SL, Yu ZY. Balancing the cost and performance trade-offs in SNN processors. IEEE Trans. on
Circuits and Systems II: Express Briefs, 2021, 68(9): 3172–3176. [doi: 10.1109/TCSII.2021.3090422]
[154] Gerlinghoff D, Wang ZH, Gu XZ, Goh RSM, Luo T. E3NE: An end-to-end framework for accelerating spiking neural networks with
emerging neural encoding on FPGAs. IEEE Trans. on Parallel and Distributed Systems, 2022, 33(11): 3207–3219. [doi: 10.1109/TPDS.
2021.3128945]
[155] Zhang J, Wang R, Pei XD, Luo D, Hussain S, Zhang GH. A fast spiking neural network accelerator based on BP-STDP algorithm and
weighted neuron model. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 69(4): 2271–2275. [doi: 10.1109/TCSII.2021.
3137987]
[156] Liu YJ, Chen YH, Ye WJ, Gui Y. FPGA-NHAP: A general FPGA-based neuromorphic hardware acceleration platform with high speed
and low power. IEEE Trans. on Circuits and Systems I: Regular Papers, 2022, 69(6): 2553–2566. [doi: 10.1109/TCSI.2022.3160693]
[157] Ye WJ, Chen YH, Liu YJ. The implementation and optimization of neuromorphic hardware for supporting spiking neural networks with
MLP and CNN topologies. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2023, 42(2): 448–461. [doi: 10.
1109/TCAD.2022.3179246]
[158] Chen QY, Gao C, Fang XY, Luan HT. Skydiver: A spiking neural network accelerator exploiting spatio-temporal workload balance.
IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2022, 41(12): 5732–5736. [doi: 10.1109/TCAD.2022.
3158834]
[159] Sommer J, Özkan MA, Keszocze O, Teich J. Efficient hardware acceleration of sparsely active convolutional spiking neural networks.
IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2022, 41(11): 3767–3778. [doi: 10.1109/TCAD.2022.
3197512]
[160] Liu HW, Chen Y, Zeng ZH, Zhang ML, Qu H. A low power and low latency FPGA-based spiking neural network accelerator. In: Proc.
of the 2023 Int’l Joint Conf. on Neural Networks (IJCNN). Gold Coast: IEEE, 2023. 1–8. [doi: 10.1109/IJCNN54540.2023.10191153]
[161] Wang ZL, Zhong Y, Cui XX, Kuang YS, Wang Y. A spiking neural network accelerator based on ping-pong architecture with sparse
spike and weight. In: Proc. of the 2023 IEEE Int’l Symp. on Circuits and Systems (ISCAS). Monterey: IEEE, 2023. 1–5. [doi: 10.1109/
ISCAS46773.2023.10181432]
[162] Li JD, Shen GB, Zhao DC, Zhang Q, Zeng Y. FireFly: A high-throughput hardware accelerator for spiking neural networks with
efficient DSP and memory optimization. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2023, 31(8): 1178–1191. [doi:
10.1109/TVLSI.2023.3279349]
[163] Hofmann J. An improved framework for and case studies in FPGA-based application acceleration-computer vision, in-network
processing and spiking neural networks [Ph.D. Thesis]. Darmstadt: Technische Universität Darmstadt, 2020. [doi: 10.25534/tuprints-
00010355]
[164] Ullah S, Rehman S, Shafique M, Kumar A. High-performance accurate and approximate multipliers for FPGA-based hardware
accelerators. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2022, 41(2): 211–224. [doi: 10.1109/TCAD.
2021.3056337]
[165] Kim Y, Li YH, Park H, Venkatesha Y, Panda P. Neural architecture search for spiking neural networks. In: Proc. of the 17th European
Conf. on Computer Vision. Tel Aviv: Springer, 2022. 36–56. [doi: 10.1007/978-3-031-20053-3_3]