Page 384 - 《软件学报》2025年第4期
P. 384

1790                                                       软件学报  2025  年第  36  卷第  4  期


                      3317966]
                 [147]  Losh M, Llamocca D. A low-power spike-like neural network design. Electronics, 2019, 8(12): 1479. [doi: 10.3390/electronics8121479]
                 [148]  Han  JH,  Li  ZL,  Zheng  WM,  Zhang  YH.  Hardware  implementation  of  spiking  neural  networks  on  FPGA.  Tsinghua  Science  and
                      Technology, 2020, 25(4): 479–486. [doi: 10.26599/TST.2019.9010019]
                 [149]  Fang HW, Mei ZD, Shrestha A, Zhao ZY, Li YL, Qiu QR. Encoding, model, and architecture: Systematic optimization for spiking
                      neural network in FPGAs. In: Proc. of the 2020 IEEE/ACM Int’l Conf. on Computer-aided Design. San Diego: IEEE, 2020. 1–9.
                 [150]  Wang SQ, Wang L, Deng Y, Yang ZJ, Guo SS, Kang ZY, Guo YF, Xu WX. SIES: A novel implementation of spiking convolutional
                      neural  network  inference  engine  on  field-programmable  gate  array.  Journal  of  Computer  Science  and  Technology,  2020,  35(2):
                      475–489. [doi: 10.1007/s11390-020-9686-z]
                 [151]  Aung  MTL,  Qu  CP,  Yang  LW,  Luo  T,  Goh  RSM,  Wong  WF.  DeepFire:  Acceleration  of  convolutional  spiking  neural  network  on
                      modern field programmable gate arrays. In: Proc. of the 31st Int’l Conf. on Field-programmable Logic and Applications (FPL). Dresden:
                      IEEE, 2021. 28–32. [doi: 10.1109/FPL53798.2021.00013]
                 [152]  Li SX, Zhang ZM, Mao RX, Xiao JB, Chang L, Zhou J. A fast and energy-efficient SNN processor with adaptive clock/event-driven
                      computation scheme and online learning. IEEE Trans. on Circuits and Systems I: Regular Papers, 2021, 68(4): 1543–1552. [doi: 10.1109/
                      TCSI.2021.3052885]

                 [153]  Zheng HL, Guo YH, Yang XY, Xiao SL, Yu ZY. Balancing the cost and performance trade-offs in SNN processors. IEEE Trans. on
                      Circuits and Systems II: Express Briefs, 2021, 68(9): 3172–3176. [doi: 10.1109/TCSII.2021.3090422]
                 [154]  Gerlinghoff D, Wang ZH, Gu XZ, Goh RSM, Luo T. E3NE: An end-to-end framework for accelerating spiking neural networks with
                      emerging neural encoding on FPGAs. IEEE Trans. on Parallel and Distributed Systems, 2022, 33(11): 3207–3219. [doi: 10.1109/TPDS.
                      2021.3128945]
                 [155]  Zhang J, Wang R, Pei XD, Luo D, Hussain S, Zhang GH. A fast spiking neural network accelerator based on BP-STDP algorithm and
                      weighted neuron model. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 69(4): 2271–2275. [doi: 10.1109/TCSII.2021.
                      3137987]
                 [156]  Liu YJ, Chen YH, Ye WJ, Gui Y. FPGA-NHAP: A general FPGA-based neuromorphic hardware acceleration platform with high speed
                      and low power. IEEE Trans. on Circuits and Systems I: Regular Papers, 2022, 69(6): 2553–2566. [doi: 10.1109/TCSI.2022.3160693]
                 [157]  Ye WJ, Chen YH, Liu YJ. The implementation and optimization of neuromorphic hardware for supporting spiking neural networks with
                      MLP and CNN topologies. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2023, 42(2): 448–461. [doi: 10.
                      1109/TCAD.2022.3179246]
                 [158]  Chen QY, Gao C, Fang XY, Luan HT. Skydiver: A spiking neural network accelerator exploiting spatio-temporal workload balance.
                      IEEE  Trans.  on  Computer-aided  Design  of  Integrated  Circuits  and  Systems,  2022,  41(12):  5732–5736.  [doi:  10.1109/TCAD.2022.
                      3158834]
                 [159]  Sommer J, Özkan MA, Keszocze O, Teich J. Efficient hardware acceleration of sparsely active convolutional spiking neural networks.
                      IEEE  Trans.  on  Computer-aided  Design  of  Integrated  Circuits  and  Systems,  2022,  41(11):  3767–3778.  [doi:  10.1109/TCAD.2022.
                      3197512]
                 [160]  Liu HW, Chen Y, Zeng ZH, Zhang ML, Qu H. A low power and low latency FPGA-based spiking neural network accelerator. In: Proc.
                      of the 2023 Int’l Joint Conf. on Neural Networks (IJCNN). Gold Coast: IEEE, 2023. 1–8. [doi: 10.1109/IJCNN54540.2023.10191153]
                 [161]  Wang ZL, Zhong Y, Cui XX, Kuang YS, Wang Y. A spiking neural network accelerator based on ping-pong architecture with sparse
                      spike and weight. In: Proc. of the 2023 IEEE Int’l Symp. on Circuits and Systems (ISCAS). Monterey: IEEE, 2023. 1–5. [doi: 10.1109/
                      ISCAS46773.2023.10181432]
                 [162]  Li  JD,  Shen  GB,  Zhao  DC,  Zhang  Q,  Zeng  Y.  FireFly:  A  high-throughput  hardware  accelerator  for  spiking  neural  networks  with
                      efficient DSP and memory optimization. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2023, 31(8): 1178–1191. [doi:
                      10.1109/TVLSI.2023.3279349]
                 [163]  Hofmann  J.  An  improved  framework  for  and  case  studies  in  FPGA-based  application  acceleration-computer  vision,  in-network
                      processing and spiking neural networks [Ph.D. Thesis]. Darmstadt: Technische Universität Darmstadt, 2020. [doi: 10.25534/tuprints-
                      00010355]
                 [164]  Ullah  S,  Rehman  S,  Shafique  M,  Kumar  A.  High-performance  accurate  and  approximate  multipliers  for  FPGA-based  hardware
                      accelerators. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2022, 41(2): 211–224. [doi: 10.1109/TCAD.
                      2021.3056337]
                 [165]  Kim Y, Li YH, Park H, Venkatesha Y, Panda P. Neural architecture search for spiking neural networks. In: Proc. of the 17th European
                      Conf. on Computer Vision. Tel Aviv: Springer, 2022. 36–56. [doi: 10.1007/978-3-031-20053-3_3]
   379   380   381   382   383   384   385   386   387   388   389