Page 385 - 《软件学报》2025年第4期
P. 385

俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署                                                     1791


                 [166]  Nane R, Sima VM, Pilato C, Choi J, Fort B, Canis A, Chen YT, Hsiao H, Brown S, Ferrandi F, Anderson J, Bertels K. A survey and
                      evaluation  of  FPGA  high-level  synthesis  tools.  IEEE  Trans.  on  Computer-aided  Design  of  Integrated  Circuits  and  Systems,  2016,
                      35(10): 1591–1604. [doi: 10.1109/TCAD.2015.2513673]
                 [167]  Misra J, Saha I. Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing, 2010, 74(1–3): 239–255.
                      [doi: 10.1016/j.neucom.2010.03.021]
                 [168]  Neil D, Liu SC. Effective sensor fusion with event-based sensors and deep network architectures. In: Proc. of the 2016 IEEE Int’l Symp.
                      on Circuits and Systems (ISCAS). Montreal: IEEE, 2016. 2282–2285. [doi: 10.1109/ISCAS.2016.7539039]
                 [169]  Benjamin BV, Gao PR, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat JM, Alvarez-Icaza R, Arthur JV, Merolla PA, Boahen
                      K. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proc. of the IEEE, 2014, 102(5): 699–716.
                      [doi: 10.1109/JPROC.2014.2313565]
                 [170]  Schemmel J, Brüderle D, Grübl A, Hock M, Meier K, Millner S. A wafer-scale neuromorphic hardware system for large-scale neural
                      modeling. In: Proc. of the 2010 IEEE Int’l Symp. on Circuits and Systems (ISCAS). Paris: IEEE, 2010. 1947–1950. [doi: 10.1109/
                      ISCAS.2010.5536970]
                 [171]  Qiao  N,  Mostafa  H,  Corradi  F,  Osswald  M,  Stefanini  F,  Sumislawska  D,  Indiveri  G.  A  reconfigurable  on-line  learning  spiking
                      neuromorphic processor comprising 256 neurons and 128K synapses. Frontiers in Neuroscience, 2015, 9: 141. [doi: 10.3389/fnins.2015.

                      00141]
                 [172]  Moradi  S,  Qiao  N,  Stefanini  F,  Indiveri  G.  A  scalable  multicore  architecture  with  heterogeneous  memory  structures  for  dynamic
                      neuromorphic asynchronous processors (DYNAPs). IEEE Trans. on Biomedical Circuits and Systems, 2018, 12(1): 106–122. [doi: 10.
                      1109/TBCAS.2017.2759700]
                 [173]  Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and
                      interface. Science, 2014, 345(6197): 668–673. [doi: 10.1126/science.1254642]
                 [174]  Furber SB, Galluppi F, Temple S, Plana LA. The spinnaker project. Proc. of the IEEE, 2014, 102(5): 652–665. [doi: 10.1109/JPROC.
                      2014.2304638]
                 [175]  Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P. PyNN: A common interface for neuronal
                      network simulators. Frontiers in Neuroinformatics, 2009, 2: 11. [doi: 10.3389/neuro.11.011.2008]
                 [176]  Davies M, Srinivasa N, Lin TH, et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 2018, 38(1):
                      82–99. [doi: 10.1109/MM.2018.112130359]
                 [177]  Yang YS, Kim Y. Recent trend of neuromorphic computing hardware: Intel’s neuromorphic system perspective. In: Proc. of the 2020 Int’l
                      SoC Design Conf. (ISOCC). Yeosu: IEEE, 2020. 218–219. [doi: 10.1109/ISOCC50952.2020.9332961]
                 [178]  Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid TianJic chip architecture. Nature, 2019, 572(7767):
                      106–111. [doi: 10.1038/s41586-019-1424-8]
                 [179]  Ma D, Shen JC, Gu ZH, Zhang M, Zhu XL, Xu XQ, Xu Q, Shen YJ, Pan G. Darwin: A neuromorphic hardware co-processor based on
                      spiking neural networks. Journal of Systems Architecture, 2017, 77: 43–51. [doi: 10.1016/j.sysarc.2017.01.003]
                 [180]  Benini L, De Micheli G. Networks on chip: A new paradigm for systems on chip design. In: Proc. of the 2002 Design, Automation and
                      Test in Europe Conf. and Exhibition. Paris: IEEE, 2002. 418–419. [doi: 10.1109/DATE.2002.998307]
                 [181]  Li YB, Wang ZR, Midya R, Xia QF, Yang JJ. Review of memristor devices in neuromorphic computing: Materials sciences and device
                      challenges. Journal of Physics D: Applied Physics, 2018, 51(50): 503002. [doi: 10.1088/1361-6463/aade3f]
                 [182]  Gaines BR. Stochastic computing. In: Proc. of the 1967 Spring Joint Computer Conf. Atlantic City: ACM, 1967. 149–156. [doi: 10.1145/
                      1465482.1465505]
                 [183]  Alawad M, Yoon HJ, Tourassi G. Energy efficient stochastic-based deep spiking neural networks for sparse datasets. In: Proc. of the
                      2017 IEEE Int’l Conf. on Big Data (Big Data). Boston: IEEE, 2017. 311–318. [doi: 10.1109/BigData.2017.8257939]
                 [184]  Chakraborty  I,  Jaiswal  A,  Saha  AK,  Gupta  SK,  Roy  K.  Pathways  to  efficient  neuromorphic  computing  with  non-volatile  memory
                      technologies. Applied Physics Reviews, 2020, 7(2): 021308. [doi: 10.1063/1.5113536]
                 [185]  Chua  L.  Memristor-the  missing  circuit  element.  IEEE  Trans.  on  Circuit  Theory,  1971,  18(5):  507–519.  [doi:  10.1109/TCT.1971.
                      1083337]
                 [186]  Strukov  DB,  Snider  GS,  Stewart  DR,  Williams  RS.  The  missing  memristor  found.  Nature,  2008,  453(7191):  80–83.  [doi:  10.1038/
                      nature06932]
                 [187]  Chua LO, Kang SM. Memristive devices and systems. Proc. of the IEEE, 1976, 64(2): 209–223. [doi: 10.1109/PROC.1976.10092]
                 [188]  Zamarreño-Ramos C, Camuñas-Mesa LA, Pérez-Carrasco JA, Masquelier T, Serrano-Gotarredona T, Linares-Barranco B. On spike-
                      timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Frontiers in Neuroscience, 2011, 5: 26. [doi:
   380   381   382   383   384   385   386   387   388   389   390