Page 385 - 《软件学报》2025年第4期
P. 385
俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署 1791
[166] Nane R, Sima VM, Pilato C, Choi J, Fort B, Canis A, Chen YT, Hsiao H, Brown S, Ferrandi F, Anderson J, Bertels K. A survey and
evaluation of FPGA high-level synthesis tools. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2016,
35(10): 1591–1604. [doi: 10.1109/TCAD.2015.2513673]
[167] Misra J, Saha I. Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing, 2010, 74(1–3): 239–255.
[doi: 10.1016/j.neucom.2010.03.021]
[168] Neil D, Liu SC. Effective sensor fusion with event-based sensors and deep network architectures. In: Proc. of the 2016 IEEE Int’l Symp.
on Circuits and Systems (ISCAS). Montreal: IEEE, 2016. 2282–2285. [doi: 10.1109/ISCAS.2016.7539039]
[169] Benjamin BV, Gao PR, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat JM, Alvarez-Icaza R, Arthur JV, Merolla PA, Boahen
K. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proc. of the IEEE, 2014, 102(5): 699–716.
[doi: 10.1109/JPROC.2014.2313565]
[170] Schemmel J, Brüderle D, Grübl A, Hock M, Meier K, Millner S. A wafer-scale neuromorphic hardware system for large-scale neural
modeling. In: Proc. of the 2010 IEEE Int’l Symp. on Circuits and Systems (ISCAS). Paris: IEEE, 2010. 1947–1950. [doi: 10.1109/
ISCAS.2010.5536970]
[171] Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G. A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128K synapses. Frontiers in Neuroscience, 2015, 9: 141. [doi: 10.3389/fnins.2015.
00141]
[172] Moradi S, Qiao N, Stefanini F, Indiveri G. A scalable multicore architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs). IEEE Trans. on Biomedical Circuits and Systems, 2018, 12(1): 106–122. [doi: 10.
1109/TBCAS.2017.2759700]
[173] Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and
interface. Science, 2014, 345(6197): 668–673. [doi: 10.1126/science.1254642]
[174] Furber SB, Galluppi F, Temple S, Plana LA. The spinnaker project. Proc. of the IEEE, 2014, 102(5): 652–665. [doi: 10.1109/JPROC.
2014.2304638]
[175] Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P. PyNN: A common interface for neuronal
network simulators. Frontiers in Neuroinformatics, 2009, 2: 11. [doi: 10.3389/neuro.11.011.2008]
[176] Davies M, Srinivasa N, Lin TH, et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 2018, 38(1):
82–99. [doi: 10.1109/MM.2018.112130359]
[177] Yang YS, Kim Y. Recent trend of neuromorphic computing hardware: Intel’s neuromorphic system perspective. In: Proc. of the 2020 Int’l
SoC Design Conf. (ISOCC). Yeosu: IEEE, 2020. 218–219. [doi: 10.1109/ISOCC50952.2020.9332961]
[178] Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid TianJic chip architecture. Nature, 2019, 572(7767):
106–111. [doi: 10.1038/s41586-019-1424-8]
[179] Ma D, Shen JC, Gu ZH, Zhang M, Zhu XL, Xu XQ, Xu Q, Shen YJ, Pan G. Darwin: A neuromorphic hardware co-processor based on
spiking neural networks. Journal of Systems Architecture, 2017, 77: 43–51. [doi: 10.1016/j.sysarc.2017.01.003]
[180] Benini L, De Micheli G. Networks on chip: A new paradigm for systems on chip design. In: Proc. of the 2002 Design, Automation and
Test in Europe Conf. and Exhibition. Paris: IEEE, 2002. 418–419. [doi: 10.1109/DATE.2002.998307]
[181] Li YB, Wang ZR, Midya R, Xia QF, Yang JJ. Review of memristor devices in neuromorphic computing: Materials sciences and device
challenges. Journal of Physics D: Applied Physics, 2018, 51(50): 503002. [doi: 10.1088/1361-6463/aade3f]
[182] Gaines BR. Stochastic computing. In: Proc. of the 1967 Spring Joint Computer Conf. Atlantic City: ACM, 1967. 149–156. [doi: 10.1145/
1465482.1465505]
[183] Alawad M, Yoon HJ, Tourassi G. Energy efficient stochastic-based deep spiking neural networks for sparse datasets. In: Proc. of the
2017 IEEE Int’l Conf. on Big Data (Big Data). Boston: IEEE, 2017. 311–318. [doi: 10.1109/BigData.2017.8257939]
[184] Chakraborty I, Jaiswal A, Saha AK, Gupta SK, Roy K. Pathways to efficient neuromorphic computing with non-volatile memory
technologies. Applied Physics Reviews, 2020, 7(2): 021308. [doi: 10.1063/1.5113536]
[185] Chua L. Memristor-the missing circuit element. IEEE Trans. on Circuit Theory, 1971, 18(5): 507–519. [doi: 10.1109/TCT.1971.
1083337]
[186] Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature, 2008, 453(7191): 80–83. [doi: 10.1038/
nature06932]
[187] Chua LO, Kang SM. Memristive devices and systems. Proc. of the IEEE, 1976, 64(2): 209–223. [doi: 10.1109/PROC.1976.10092]
[188] Zamarreño-Ramos C, Camuñas-Mesa LA, Pérez-Carrasco JA, Masquelier T, Serrano-Gotarredona T, Linares-Barranco B. On spike-
timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Frontiers in Neuroscience, 2011, 5: 26. [doi: