Page 388 - 《软件学报》2025年第4期
P. 388
1794 软件学报 2025 年第 36 卷第 4 期
networks in hardware. arXiv:1705.06963, 2017.
[231] Alippi C. Selecting accurate, robust, and minimal feedforward neural networks. IEEE Trans. on Circuits and Systems I: Fundamental
Theory and Applications, 2002, 49(12): 1799–1810. [doi: 10.1109/TCSI.2002.805710]
[232] Nelson VP. Fault-tolerant computing: Fundamental concepts. Computer, 1990, 23(7): 19–25. [doi: 10.1109/2.56849]
[233] Vatajelu EI, Prinetto P, Taouil M, Hamdioui S. Challenges and solutions in emerging memory testing. IEEE Trans. on Emerging Topics
in Computing, 2019, 7(3): 493–506. [doi: 10.1109/TETC.2017.2691263]
[234] Xia LX, Gu P, Li BX, Tang TQ, Yin XL, Huangfu WQ, Yu SM, Cao Y, Wang Y, Yang HZ. Technological exploration of RRAM
crossbar array for matrix-vector multiplication. Journal of Computer Science and Technology, 2016, 31(1): 3–19. [doi: 10.1007/s11390-
016-1608-8]
[235] Pop P, Izosimov V, Eles P, Peng ZB. Design optimization of time- and cost-constrained fault-tolerant embedded systems with
checkpointing and replication. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2009, 17(3): 389–402. [doi: 10.1109/
TVLSI.2008.2003166]
[236] Neti C, Schneider MH, Young ED. Maximally fault tolerant neural networks. IEEE Trans. on Neural Networks, 1992, 3(1): 14–23. [doi:
10.1109/72.105414]
[237] Protzel PW, Palumbo DL, Arras MK. Performance and fault-tolerance of neural networks for optimization. IEEE Trans. on Neural
Proc. of the 59th ACM/IEEE Design Automation Conf. San Francisco: ACM, 2022. 151–156. [doi: 10.1145/3489517.3530657]
Networks, 1993, 4(4): 600–614. [doi: 10.1109/72.238315]
[238] Indiveri G. A low-power adaptive integrate-and-fire neuron circuit. In: Proc. of the 2003 Int’l Symp. on Circuits and Systems. Bangkok:
IEEE, 2003. IV-820–VI-823. [doi: 10.1109/ISCAS.2003.1206342]
[239] Spyrou T, El-Sayed SA, Afacan E, Camuñas-Mesa LA, Linares-Barranco B, Stratigopoulos HG. Reliability analysis of a spiking neural
network hardware accelerator. In: Proc. of the 2022 Design, Automation & Test in Europe Conf. & Exhibition (DATE). Antwerp: IEEE,
2022. 370–375. [doi: 10.23919/DATE54114.2022.9774711]
[240] Vatajelu EI, Di Natale G, Anghel L. Special session: Reliability of hardware-implemented spiking neural networks (SNN). In: Proc. of
the 37th IEEE VLSI Test Symp. (VTS). Monterey: IEEE, 2019. 1–8. [doi: 10.1109/VTS.2019.8758653]
[241] Goodman D, Brette R. Brian: A simulator for spiking neural networks in Python. Frontiers in Neuroinformatics, 2008, 2: 5. [doi: 10.
3389/neuro.11.005.2008]
[242] Schuman CD, Mitchell JP, Johnston JT, Parsa M, Kay B, Date P, Patton RM. Resilience and robustness of spiking neural networks for
neuromorphic systems. In: Proc. of the 2020 Int’l Joint Conf. on Neural Networks (IJCNN). Glasgow: IEEE, 2020. 1–10. [doi: 10.1109/
IJCNN48605.2020.9207560]
[243] Spyrou T, El-Sayed SA, Afacan E, Camuñas-Mesa LA, Linares-Barranco B, Stratigopoulos HG. Neuron fault tolerance in spiking
neural networks. In: Proc. of the 2021 Design, Automation & Test in Europe Conf. & Exhibition (DATE). Grenoble: IEEE, 2021.
743–748. [doi: 10.23919/DATE51398.2021.9474081]
[244] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
[245] Chen QY, He GQ, Wang XY, Xu J, Shen SR, Chen H, Fu YX, Li L. A 67.5 μJ/prediction accelerator for spiking neural networks in
image segmentation. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 69(2): 574–578. [doi: 10.1109/TCSII.2021.
3098633]
[246] Zhang JL, Liang MX, Wei JS, Wei SJ, Chen H. A 28 nm configurable asynchronous SNN accelerator with energy-efficient learning. In:
Proc. of the 27th IEEE Int’l Symp. on Asynchronous Circuits and Systems (ASYNC). Beijing: IEEE, 2021. 34–39. [doi: 10.1109/
ASYNC48570.2021.00013]
[247] Putra RVW, Hanif MA, Shafique M. SoftSNN: Low-cost fault tolerance for spiking neural network accelerators under soft errors. In:
[248] Yerima WY, Ikechukwu OM, Dang KN, Abdallah AB. Fault-tolerant spiking neural network mapping algorithm and architecture to 3D-
NoC-based neuromorphic systems. IEEE Access, 2023, 11: 52429–52443. [doi: 10.1109/ACCESS.2023.3278802]
[249] Liu JX, Harkin J, Maguire LP, Mcdaid LJ, Wade JJ. SPANNER: A self-repairing spiking neural network hardware architecture. IEEE
Trans. on Neural Networks and Learning Systems, 2018, 29(4): 1287–1300. [doi: 10.1109/TNNLS.2017.2673021]
[250] Johnson AP, Liu JX, Millard AG, Karim S, Tyrrell AM, Harkin J, Timmis J, McDaid L, Halliday DM. Time-multiplexed system-on-
chip using fault-tolerant astrocyte-neuron networks. In: Proc. of the 2018 IEEE Symp. Series on Computational Intelligence (SSCI).
Bangalore: IEEE, 2018. 1076–1083. [doi: 10.1109/SSCI.2018.8628710]