Page 380 - 《软件学报》2025年第4期
P. 380

1786                                                       软件学报  2025  年第  36  卷第  4  期


                      Neurocomputing, 2014, 138: 3–13. [doi: 10.1016/j.neucom.2013.06.052]
                 [57]  Comsa IM, Potempa K, Versari L, Fischbacher T, Gesmundo A, Alakuijala J. Temporal coding in spiking neural networks with alpha
                      synaptic function. In: Proc. of the 2020 IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP 2020). Barcelona: IEEE,
                      2020. 8529–8533. [doi: 10.1109/ICASSP40776.2020.9053856]
                 [58]  Park S, Kim S, Choe H, Yoon S. Fast and efficient information transmission with burst spikes in deep spiking neural networks. In: Proc.
                      of the 56th ACM/IEEE Design Automation Conf. Las Vegas: IEEE, 2019. 1–6.
                 [59]  van  Rullen  R,  Thorpe  SJ.  Rate  coding  versus  temporal  order  coding:  What  the  retinal  ganglion  cells  tell  the  visual  cortex.  Neural
                      Computation, 2001, 13(6): 1255–1283. [doi: 10.1162/08997660152002852]
                 [60]  Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR. Efficiency and ambiguity in an adaptive neural code. Nature, 2001,
                      412(6849): 787–792. [doi: 10.1038/35090500]
                 [61]  Alam SH, Foshie A, Rose G. A runtime-reconfigurable hardware encoder for spiking neural networks. In: Proc. of the 2023 Great Lakes
                      Symp. on VLSI. Knoxville: ACM, 2023. 203–206. [doi: 10.1145/3583781.3590284]
                 [62]  Hebb  DO.  The  Organization  of  Behavior:  A  Neuropsychological  Theory.  New  York:  Psychology  Press,  2002.  [doi:  10.4324/
                      9781410612403]
                 [63]  Caporale N, Dan Y. Spike timing-dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience, 2008, 31: 25–46. [doi:
                      10.1146/annurev.neuro.31.060407.125639]
                 [64]  Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience,
                      2000, 3(9): 919–926. [doi: 10.1038/78829]
                 [65]  Dan Y, Poo MM. Spike timing-dependent plasticity: From synapse to perception. Physiological Reviews, 2006, 86(3): 1033–1048. [doi:
                      10.1152/physrev.00030.2005]
                 [66]  Qiao  GC,  Hu  SG,  Wang  JJ,  Zhang  CM,  Chen  TP,  Ning  N,  Yu  Q,  Liu  Y.  A  neuromorphic-hardware  oriented  bio-plausible  online-
                      learning spiking neural network model. IEEE Access, 2019, 7: 71730–71740. [doi: 10.1109/ACCESS.2019.2919163]
                 [67]  Joo B, Han JW, Kong BS. Energy- and area-efficient CMOS synapse and neuron for spiking neural networks with STDP learning. IEEE
                      Trans. on Circuits and Systems I: Regular Papers, 2022, 69(9): 3632–3642. [doi: 10.1109/TCSI.2022.3178989]
                 [68]  Liu  S,  Wang  JJ,  Zhou  JT,  Hu  SG,  Yu  Q,  Chen  TP,  Liu  Y.  An  area-  and  energy-efficient  spiking  neural  network  with  spike-time-
                      dependent plasticity realized with SRAM processing-in-memory macro and on-chip unsupervised learning. IEEE Trans. on Biomedical
                      Circuits and Systems, 2023, 17(1): 92–104. [doi: 10.1109/TBCAS.2023.3242413]
                 [69] Processing Systems. Montréal: Curran Associates Inc., 2018. 1419–1428.
                      Qu LH, Zhao ZY, Wang L, Wang Y. Efficient and hardware-friendly methods to implement competitive learning for spiking neural
                      networks. Neural Computing and Applications, 2020, 32(17): 13479–13490. [doi: 10.1007/s00521-020-04755-4]
                 [70]  Sun CY, Sun HH, Xu J, Han JN, Wang XY, Wang XY, Chen QY, Fu YX, Li L. An energy efficient STDP-based SNN architecture with
                      on-chip learning. IEEE Trans. on Circuits and Systems I: Regular Papers, 2022, 69(12): 5147–5158. [doi: 10.1109/TCSI.2022.3204645]
                 [71]  Tavanaei A, Maida A. BP-STDP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing, 2019, 330:
                      39–47. [doi: 10.1016/j.neucom.2018.11.014]
                 [72]  Gomar S, Ahmadi M. Digital realization of PSTDP and TSTDP learning. In: Proc. of the 2018 Int’l Joint Conf. on Neural Networks
                      (IJCNN). Rio de Janeiro: IEEE, 2018. 1–5. [doi: 10.1109/IJCNN.2018.8489263]
                 [73]  Bellec  G,  Salaj  D,  Subramoney  A,  Legenstein  R,  Maass  W.  Long  short-term  memory  and  learning-to-learn  in  networks  of  spiking
                      neurons. In: Proc. of the 32nd Int’l Conf. on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018. 795–805.
                 [74]  Neftci  EO,  Mostafa  H,  Zenke  F.  Surrogate  gradient  learning  in  spiking  neural  networks:  Bringing  the  power  of  gradient-based
                      optimization to spiking neural networks. IEEE Signal Processing Magazine, 2019, 36(6): 51–63. [doi: 10.1109/MSP.2019.2931595]
                 [75]  Shrestha SB, Orchard G. SLAYER: Spike layer error reassignment in time. In: Proc. of the 32nd Int’l Conf. on Neural Information

                 [76]  Rathi N, Chakraborty I, Kosta A, Sengupta A, Ankit A, Panda P, Roy K. Exploring neuromorphic computing based on spiking neural
                      networks: Algorithms to hardware. ACM Computing Surveys, 2023, 55(12): 243. [doi: 10.1145/3571155]
                 [77]  Zheng N, Mazumder P. Online supervised learning for hardware-based multilayer spiking neural networks through the modulation of
                      weight-dependent spike-timing-dependent plasticity. IEEE Trans. on Neural Networks and Learning Systems, 2018, 29(9): 4287–4302.
                      [doi: 10.1109/TNNLS.2017.2761335]
                 [78]  Qiao GC, Ning N, Zuo Y, Zhou PJ, Sun ML, Hu SG, Yu Q, Liu Y. Batch normalization-free weight-binarized SNN based on hardware-
                      saving IF neuron. Neurocomputing, 2023, 544: 126234. [doi: 10.1016/j.neucom.2023.126234]
                 [79]  Zhou P, Choi DU, Kang SM, Eshraghian JK. Backpropagating errors through memristive spiking neural networks. In: Proc. of the 2023
                      IEEE Int’l Symp. on Circuits and Systems (ISCAS). Monterey: IEEE, 2023. 1–5. [doi: 10.1109/ISCAS46773.2023.10182006]
   375   376   377   378   379   380   381   382   383   384   385