Page 381 - 《软件学报》2025年第4期
P. 381

俞诗航 等: 神经形态计算: 从脉冲神经网络到边缘部署                                                     1787


                 [80]  Sankaran A, Detterer P, Kannan K, Alachiotis N, Corradi F. An event-driven recurrent spiking neural network architecture for efficient
                      inference on FPGA. In: Proc. of the 2022 Int’l Conf. on Neuromorphic Systems. Knoxville: ACM, 2022. 12. [doi: 10.1145/3546790.
                      3546802]
                 [81]  Liang  L,  Chen  ZD,  Deng  L,  Tu  FB,  Li  GQ,  Xie  Y.  Accelerating  spatiotemporal  supervised  training  of  large-scale  spiking  neural
                      networks on GPU. In: Proc. of the 2022 Design, Automation & Test in Europe Conf. & Exhibition (DATE). Antwerp: IEEE, 2022.
                      658–663. [doi: 10.23919/DATE54114.2022.9774780]
                 [82]  Bohnstingl T, Woźniak S, Pantazi A, Eleftheriou E. Online spatio-temporal learning in deep neural networks. IEEE Trans. on Neural
                      Networks and Learning Systems, 2023, 34(11): 8894–8908. [doi: 10.1109/TNNLS.2022.3153985]
                 [83]  Bellec  G,  Scherr  F,  Subramoney  A,  Hajek  E,  Salaj  D,  Legenstein  R,  Maass  W.  A  solution  to  the  learning  dilemma  for  recurrent
                      networks of spiking neurons. Nature Communications, 2020, 11(1): 3625. [doi: 10.1038/s41467-020-17236-y]
                 [84]  Ferré  P,  Mamalet  F,  Thorpe  SJ.  Unsupervised  feature  learning  with  winner-takes-all  based  STDP.  Frontiers  in  Computational
                      Neuroscience, 2018, 12: 24. [doi: 10.3389/fncom.2018.00024]
                 [85]  Cao  YQ,  Chen  Y,  Khosla  D.  Spiking  deep  convolutional  neural  networks  for  energy-efficient  object  recognition.  Int’l  Journal  of
                      Computer Vision, 2015, 113(1): 54–66. [doi: 10.1007/s11263-014-0788-3]
                 [86]  Xu Y, Tang HJ, Xing JW, Li HY. Spike trains encoding and threshold rescaling method for deep spiking neural networks. In: Proc. of

                      the 2017 IEEE Symp. Series on Computational Intelligence (SSCI). Honolulu: IEEE, 2017. 1–6. [doi: 10.1109/SSCI.2017.8285427]
                 [87]  Xu Q, Peng JX, Shen JR, Tang HJ, Pan G. Deep CovDenseSNN: A hierarchical event-driven dynamic framework with spiking neurons
                      in noisy environment. Neural Networks, 2020, 121: 512–519. [doi: 10.1016/j.neunet.2019.08.034]
                 [88]  Wang YX, Xu Y, Yan R, Tang HJ. Deep spiking neural networks with binary weights for object recognition. IEEE Trans. on Cognitive
                      and Developmental Systems, 2021, 13(3): 514–523. [doi: 10.1109/TCDS.2020.2971655]
                 [89]  Lew D, Lee K, Park J. A time-to-first-spike coding and conversion aware training for energy-efficient deep spiking neural network
                      processor  design.  In:  Proc.  of  the  59th  ACM/IEEE  Design  Automation  Conf.  San  Francisco:  ACM,  2022.  265–270.  [doi:  10.1145/
                      3489517.3530457]
                 [90]  Diehl PU, Neil D, Binas J, Cook M, Liu SC, Pfeiffer M. Fast-classifying, high-accuracy spiking deep networks through weight and
                      threshold balancing. In: Proc. of the 2015 Int’l Joint Conf. on Neural Networks (IJCNN). Killarney: IEEE, 2015. 1–8. [doi: 10.1109/
                      IJCNN.2015.7280696]
                 [91]  Sengupta A, Ye YT, Wang R, Liu CA, Roy K. Going deeper in spiking neural networks: VGG and residual architectures. Frontiers in
                      Neuroscience, 2019, 13: 95. [doi: 10.3389/fnins.2019.00095]
                 [92]  Zhang  J,  Zhang  L.  Spiking  neural  network  implementation  on  FPGA  for  multiclass  classification.  In:  Proc.  of  the  2023  IEEE  Int’l
                      Systems Conf. (SysCon). Vancouver: IEEE, 2023. 1–8. [doi: 10.1109/SysCon53073.2023.10131076]
                 [93]  Hu  YF,  Tang  HJ,  Pan  G.  Spiking  deep  residual  networks.  IEEE  Trans.  on  Neural  Networks  and  Learning  Systems,  2023,  34(8):
                      5200–5205. [doi: 10.1109/TNNLS.2021.3119238]
                 [94]  Zhang DZ, Jia SC, Wang QY. Recent advances and new frontiers in spiking neural networks. arXiv:2204.07050, 2022.
                 [95]  Guo WZ, Yantır HE, Fouda ME, Eltawil AM, Salama KN. Toward the optimal design and FPGA implementation of spiking neural
                      networks. IEEE Trans. on Neural Networks and Learning Systems, 2022, 33(8): 3988–4002. [doi: 10.1109/TNNLS.2021.3055421]
                 [96]  Chen YQ, Yu ZF, Fang W, Huang TJ, Tian YH. Pruning of deep spiking neural networks through gradient rewiring. arXiv:2105.04916,
                      2021.
                 [97]  Yin SH, Venkataramanaiah SK, Chen GK, Krishnamurthy R, Cao Y, Chakrabarti C, Seo JS. Algorithm and hardware design of discrete-
                      time spiking neural networks based on back propagation with binary activations. In: Proc. of the 2017 IEEE Biomedical Circuits and
                      Systems Conf. (BioCAS). Turin: IEEE, 2017. 1–5. [doi: 10.1109/BIOCAS.2017.8325230]
                 [98]  Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. on Neural Networks,
                      1994, 5(2): 157–166. [doi: 10.1109/72.279181]
                 [99]  Alemi A, Machens CK, Denève S, Slotine JJ. Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity
                      rules. In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2018. 588–595. [doi: 10.1609/aaai.v32i1.11320]
                 [100]  Gilra A, Gerstner W. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network. eLife, 2017, 6:
                      e28295. [doi: 10.7554/eLife.28295]
                 [101]  Meulemans A, Farinha MT, Ordóñez JG, Aceituno PV, Sacramento J, Grewe BF. Credit assignment in neural networks through deep
                      feedback control. In: Proc. of the 35th Int’l Conf. on Neural Information Processing Systems. Curran Associates Inc., 2021. 4674–4687.
                 [102]  Urbanczik R, Senn W. Learning by the dendritic prediction of somatic spiking. Neuron, 2014, 81(3): 521–528. [doi: 10.1016/j.neuron.
                      2013.11.030]
   376   377   378   379   380   381   382   383   384   385   386