Page 19 - 《爆炸与冲击》2025年第9期
P. 19

第 45 卷    第 9 期                   爆    炸    与    冲    击                       Vol. 45, No. 9
                2025 年 9 月                    EXPLOSION AND SHOCK WAVES                          Sept., 2025

               DOI:10.11883/bzycj-2024-0356


               有限长锥体诱导的斜爆轰波非定常结构的数值研究                                                                    *


                                               刘    江,归明月,张道平,董    刚
                                     (南京理工大学瞬态物理全国重点实验室,江苏 南京 210094)


                  摘要: 基于开源代码       OpenFOAM  对有限长锥体诱导的斜爆轰波开展了数值模拟,并讨论了爆轰波后流场、波阵
               面 结 构 和 爆 轰 胞 格 结 构 。 结 果 表 明 , 在 有 限 长 锥 体 结 构 的 影 响 下 , 爆 轰 波 后 流 场 先 后 受 到  Taylor-Maccoll 流 动 和
               Prandtl-Meyer 膨胀波的影响。爆轰波阵面不同位置流线上的压力和马赫数在这                    2  种物理过程及波阵面三波结构的影
               响下,发生震荡变化,随后趋于稳定。在不同波后流场的影响下,爆轰波阵面结构呈现                              4  种不同的结构:类    Zel’dovich-
               Neumann-Döring (ZND) 的光滑结构、类胞格的单三波点结构、胞格的双三波点结构和                  Prandtl-Meyer 影响的双三波点结
               构。借助激波极曲线理论对三波点附近的波系进行了分析,发现在双三波点结构中,面向来流的三波点具有比面向下
               游的三波点具有更强的爆轰强度,即更高的马赫数和压力。最后,结合上述分析,绘制了爆轰波阵面的三波点轨迹,得
               到  4  种不同的胞格结构:光滑平面结构、平行线结构、斜菱形结构和无规则的斜菱形结构。
                  关键词: 有限长尖锥;斜爆轰波;Taylor-Maccoll 流动;Prandtl-Meyer 膨胀波;爆轰胞格
                  中图分类号: O382   国标学科代码: 13035   文献标志码: A


                        Numerical study on unsteady structure of oblique detonation
                                           wave induced by a finite cone

                                     LIU Jiang, GUI Mingyue, ZHANG Daoping, DONG Gang
                          (National Key Laboratory of Transient Physics, Nanjing University of Science and Technology,
                                                Nanjing 210094, Jiangsu, China)

               Abstract:   Axisymmetric  conical  structures,  as  a  common  configuration,  induce  oblique  detonation  waves  exhibiting
               significantly greater structural complexity compared to those generated by sharp wedges. Numerical simulations of oblique
               detonation waves induced by a finite cone were performed using the open-source code OpenFOAM, with analysis conducted
               on post-detonation flow fields, wavefront structure, and detonation cell structures. The numerical results show that under the
               effect  of  the  finite  cone  the  flow  field  behind  the  detonation  wave  is  successively  influenced  by  Taylor-Maccoll  flow  and
               Prandtl-Meyer expansion waves. The pressure and Mach number along the streamlines at different positions on the detonation
               wave  front  exhibit  oscillatory  changes  with  the  influence  of  these  two  physical  processes  and  triple  points  on  oblique
               detonation surfaces, and then tend to stabilize. Depending on the different post-detonation flow field, the detonation wave front
               structure is divided into four sections: smooth ZND (Zel’dovich-Neumann-Döring)-like structure, single-headed triple points
               cell-like structure, dual-headed triple points cell structure and dual-headed triple point structure influenced by Prandtl-Meyer.
               The shock pole curve theory is used to analyze the wave structures. It is found that the upstream-facing triple points exhibits
               higher detonation intensity, i.e., higher Mach number and pressure, compared to the downstream-facing triple points in dual-
               headed triple points structure. Finally, based on the above analysis, triple point traces are recorded to obtain four different cell
               structures: smooth planar structure, parallel line structure, oblique rhombus structure, and irregular oblique rhombus structure.
               Keywords:  finite cone; oblique detonation wave; Taylor-Maccoll flow; Prandtl-Meyer expansion wave; detonation cell
               structure





                 *   收稿日期: 2024-09-20;修回日期: 2025-04-02
                   第一作者: 刘 江(1999- ),男,硕士研究生,ljiang926@163.com
                   通信作者: 归明月(1977- ),男,博士,副研究员,mygui@njust.edu.cn


                                                         092101-1
   14   15   16   17   18   19   20   21   22   23   24