Page 18 - 《爆炸与冲击》2025年第9期
P. 18
第 45 卷 原 凯,等: 航行体高速入水时多孔泡沫的缓冲降载特性 第 9 期
WANG J, LIU L X, CHENG Y. Numerical investigation on the high-speed water entry cavity and load reduction of air-jetting
cylinder [J]. Chinese Journal of Hydrodynamics, 2023, 38(2): 195–204. DOI: 10.16076/j.cnki.cjhd.2023.02.005.
[11] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析 [J]. 西北工业大学学报, 2021, 39(4): 810–817. DOI:
10.1051/jnwpu/20213940810.
ZHAO H R, SHI Y, PAN G. Numerical analysis of cavitation characteristics for high speed water entry of headjet vehicle [J].
Journal of Northwestern Polytechnical University, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
[12] 宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究 [J]. 鱼雷技术, 1999, 7(2): 41–46.
XUAN J M, SONG Z P, YAN Z H. Experimental study on disintegration of torpedo nose cap during water entry [J]. Torpedo
Technology, 1999, 7(2): 41–46.
[13] HORTON D M. Shock-mitigating nose for underwater vehicles: U. S. Patent 6536365 [P]. 2003.
[14] AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact
loading by means of energy-absorption diagram [J]. International Journal of Impact Engineering, 2001, 25(5): 455–472. DOI:
10.1016/S0734-743X(00)00060-9.
[15] 曾斐, 潘艺, 胡时胜. 泡沫铝缓冲吸能评估及其特性 [J]. 爆炸与冲击, 2002, 22(4): 358–362. DOI: 10.11883/1001-1455
(2002)04-0358-5.
ZENG F, PAN Y, HU S S. Evaluation of cushioning properties and energy-absorption capability of foam aluminium [J].
Explosion and Shock Waves, 2002, 22(4): 358–362. DOI: 10.11883/1001-1455(2002)04-0358-5.
[16] SHI Y, GAO X, PAN G. Design and load reduction performance analysis of mitigator of AUV during high speed water
entry [J]. Ocean Engineering, 2019, 181: 314–329. DOI: 10.1016/j.oceaneng.2019.03.062.
[17] 孙龙泉, 王都亮, 李志鹏, 等. 基于 CEL 方法的航行体高速入水泡沫铝缓冲装置降载性能分析 [J]. 振动与冲击, 2021,
40(20): 80–88. DOI: 10.13465/j.cnki.jvs.2021.20.011.
SUN L Q, WANG D L, LI Z P, et al. Analysis on load reduction performance of foamed aluminum buffer device for high-
speed water entry of vehicle based on a CEL method [J]. Journal of Vibration and Shock, 2021, 40(20): 80–88. DOI:
10.13465/j.cnki.jvs.2021.20.011.
[18] 魏海鹏, 史崇镔, 孙铁志, 等. 基于 ALE 方法的航行体高速入水缓冲降载性能数值研究 [J]. 爆炸与冲击, 2021, 41(10):
104201. DOI: 10.11883/bzycj-2020-0461.
WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based
on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
[19] HENNEAUX D, SCHROOYEN P, CHATELAIN P, et al. High-order enforcement of jumps conditions between compressible
viscous phases: an extended interior penalty discontinuous Galerkin method for sharp interface simulation [J]. Computer
Methods in Applied Mechanics and Engineering, 2023, 415: 116215. DOI: 10.1016/j.cma.2023.116215.
[20] LI Y, ZONG Z, SUN T Z. Classification of the collapse of a composite fairing during the oblique high-speed water entry [J].
Thin-Walled Structures, 2023, 182(12): 110260. DOI: 10.1016/j.tws.2022.110260.
[21] 魏洪亮, 赵静, 徐志程, 等. 基于流固耦合的航行体高速入水规律研究 [J]. 导弹与航天运载技术, 2020(2): 33–37. DOI:
10.7654/j.issn.1004-7182.20200207.
WEI H L, ZHAO J, XU Z C, et al. Study on high-speed water entry law of trans-media vehicle based on fluid solid coupling [J].
Missiles and Space Vehicles, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.
[22] 孙琦, 周军, 林鹏. 基于 LS-DYNA 的弹体撞水过程流固耦合动力分析 [J]. 系统仿真学报, 2010, 22(6): 1498–1501. DOI:
10.16182/j.cnki.joss.2010.06.005.
SUN Q, ZHOU J, LIN P. Dynamic analysis of fluid-structure interaction for water impact of projectile using LS-DYNA [J].
Journal of System Simulation, 2010, 22(6): 1498–1501. DOI: 10.16182/j.cnki.joss.2010.06.005.
[23] 李尧. 航行体高速入水缓冲头帽的降载机制与行为特性研究 [D]. 大连: 大连理工大学, 2023: 23–25, 53–56.
LI Y. Load reduction mechanism and behavior characteristics of the buffering cap for the vehicle during the high-speed water
entry [D]. Dalian: Dalian University of Technology, 2023: 23–25, 53–56.
(责任编辑 蔡国艳)
091001-15