Page 36 - 《振动工程学报》2025年第9期
P. 36

1966                               振     动     工     程     学     报                     第 38 卷

              聚。一方面,该方法采用分级的损伤定位和识别减                                损伤识别方法     [J]. 工程力学,2022,39(9):225-233.
              少了每一次迭代搜索的单元数,同时提高了识别精                                ZOU  Yunfeng, LU  Xuandong, YANG  Jinsong, et  al.  A
              度和效率;另一方面,通过模型缩聚减少了每次迭代                               damage identification method based on strain modal response
                                                                    reconstruction[J].  Engineering  Mechanics, 2022, 39( 9) :
              中的结构矩阵维数,降低矩阵数据的冗余,从而提高
                                                                    225-233.
              了效率并节省了计算资源。
                                                                [11]  WANG X Y,HOU R R,XIA Y,et al. Laplace approxima-
                  (3)大型结构的损伤识别难以全局开展,而通常                            tion in sparse Bayesian learning for structural damage detec-
              仅在关键位置布置较密集的传感器列阵。在这种情                                tion[J].  Mechanical  Systems  and  Signal  Processing, 2020,
              况下,该方法应将未监测部分考虑为冗余自由度并                                140:106701.
              划分为维度更大的冗余超单元,在监测部分则划分                            [12]  缪炳荣,张盈,黄仲,等. 利用模态应变能变化率的结构损
              为维度更小的参与模型更新的超单元。对比数值案                                伤识别优化方法     [J]. 振动工程学报,2023,36(2):477-486.
                                                                    MIAO  Bingrong, ZHANG  Ying, HUANG  Zhong, et  al.
              例和试验案例的有无模型缩聚耗时,可以看出,随着
                                                                    Structural  damage  identification  optimization  method  using
              自由度数目的增加,模型缩聚的作用会愈发明显,而
                                                                    change  rate  of  modal  strain  energy[J].  Journal  of  Vibration
              多级识别策略的精度和效率提升仅仅与识别的维度                                Engineering,2023,36(2):477-486.
              相关(传感器的数量和布置范围)。                                  [13]  GUO  J, WANG  L, TAKEWAKI  I.  Frequency  response-
                                                                    based damage identification in frames by minimum constitu-
              参考文献:                                                 tive  relation  error  and  sparse  regularization[J].  Journal  of
                                                                    Sound and Vibration,2019,443:270-292.
                                                                [14]  LEE  E  T, EUN  H  C.  An  optimal  sensor  layout  using  the
              [1]  NORDEN  E  HUANG  Z  S.  The  empirical  mode  decomposi-
                                                                    frequency  response  function  data  within  a  wide  range  of
                  tion and the Hilbert spectrum for nonlinear and non-stationary
                                                                    frequencies[J]. Sensors,2022,22(10):3778.
                  time series analysis[J]. Proceedings:Mathematical,Physical
                                                                [15]  张永宏,邵凡,赵晓平,等. 基于多标签零样本学习的滚
                  and Engineering Sciences,1998,454(1971):903-995.
                                                                    动轴承故障诊断     [J]. 振动与冲击,2022,41(11):55-64.
              [2]  HE  J  J, ZHOU  Y  B.  A  novel  mode  shape  reconstruction
                                                                    ZHANG Yonghong,SHAO Fan,ZHAO Xiaoping,et al. Rolling
                  method for damage diagnosis of cracked beam[J]. Mechanical
                                                                    bearing fault diagnosis based on multi-label zero-shot learning
                  Systems and Signal Processing,2019,122:433-447.
                                                                    [J]. Journal of Vibration and Shock,2022,41(11):55-64.
              [3]  吴宗臻,刘维宁,马龙祥,等. 基于实测频响函数列的地
                                                                [16]  邹云峰,卢玄东,阳劲松,等. 基于模态综合法和模态叠
                  铁环境振动响应预测方法         [J]. 工程力学,2015,32(6):
                                                                    加 法 的 密 集 模 态 结 构 响 应 重构  [J].  工 程 力 学 , 2023,
                  155-161.
                                                                    40(3):54-64.
                  WU  Zongzhen, LIU  Weining, MA  Longxiang, et  al.
                                                                    ZOU Yunfeng,LU Xuandong,YANG Jinsong,et al. Struc-
                  Prediction  method  for  metro  environmental  vibrations  based
                                                                    tural response reconstruction based on mode synthesis method
                  on  measured  frequency  response  functions[J].  Engineering
                                                                    and modal superposition method in the presence of closely spaced
                  Mechanics,2015,32(6):155-161.
                                                                    modes[J]. Engineering Mechanics,2023,40(3):54-64.
              [4]  LI  J, LAW  S  S.  Substructural  response  reconstruction  in
                                                                [17]  邹云峰,付正亿,何旭辉,等. 基于经验模态分解和模型
                  wavelet  domain[J].  Journal  of  Applied  Mechanics, 2011,
                                                                    缩 聚 的 动 力 响 应 重 构 方 法 研究  [J].  工 程 力 学 , 2022,
                  78(4):041010.
                                                                    39(2):67-75.
              [5]  LAW  S  S, LI  X  Y, ZHU  X  Q, et  al.  Structural  damage
                                                                    ZOU  Yunfeng, FU  Zhengyi, HE  Xuhui, et  al.  Dynamic
                  detection  from  wavelet  packet  sensitivity[J].  Engineering
                                                                    response  reconstruction  method  based  on  empirical  mode
                  Structures,2005,27(9):1339-1348.
                                                                    decomposition  and  model  condensation[J].  Engineering
              [6]  WANG L,CHEN R,DAI L Z,et al. A detection method
                                                                    Mechanics,2022,39(2):67-75.
                  integrating  modal  deflection  curvature  difference  and  natural
                                                                [18]  BRANDON J A. Derivation and significance of second-order
                  frequency  for  structural  stiffness  degradation[J].  Engineering
                                                                    modal design sensitivities[J]. AIAA Journal,1984,22(5):
                  Failure Analysis,2022,141:106637.
                                                                    723-724.
              [7]  HOU R R,XIA Y,ZHOU X Q. Structural damage detec-
                                                                [19]  CHOI  K  M, CHO  S  W, KO  M  G, et  al.  Higher  order
                  tion based on L1 regularization using natural frequencies and
                                                                    eigensensitivity  analysis  of  damped  systems  with  repeated
                  mode  shapes[J].  Structural  Control  and  Health  Monitoring,
                                                                    eigenvalues[J]. Computers & Structures,2004,82(1):63-69.
                  2018,25(3):e2107.
                                                                [20]  ZHANG  C  D, XU  Y  L.  Multi-level  damage  identification
              [8]  LIU G J,ZHAI Y Z,LENG D X,et al. Research on struc-
                                                                    with  response  reconstruction[J].  Mechanical  Systems  and
                  tural damage detection of offshore platforms based on grouping
                                                                    Signal Processing,2017,95:42-57.
                  modal strain energy[J]. Ocean Engineering,2017,140:43-49.
              [9]  ZHANG Y J,LUO Y F,GUO X N,et al. A new damage
                                                                第一作者:邹云峰(1984—),男,博士,教授。
                  detection  method  of  single-layer  latticed  shells  based  on
                  combined  modal  strain  energy  index[J].  Mechanical  Systems  E-mail:yunfengzou@csu.edu.cn
                  and Signal Processing,2022,172:109011.        通信作者:卢玄东(1997—),男,硕士。
              [10]  邹云峰,卢玄东,阳劲松,等. 基于应变模态响应重构的                          E-mail:xuandonglu@csu.edu.cn
   31   32   33   34   35   36   37   38   39   40   41