Page 148 - 《振动工程学报》2025年第9期
P. 148
2078 振 动 工 程 学 报 第 38 卷
表 5 波纹夹芯结构沿波纹方向单边固支状态下前 5 阶固有频率对比
Tab. 5 Comparison of the first five natural frequencies of a corrugated sandwich structure with one side fixed along the
machine-direction
薄(夹芯)板 厚(夹芯)板
试验 三阶剪切模型 一阶剪切模型 试验 三阶剪切模型 一阶剪切模型
阶次
均方根 均方根 均方根 均方根
频率/Hz 频率/Hz 误差/% 频率/Hz 误差/% 频率/Hz 频率/Hz 误差/% 频率/Hz 误差/%
误差/% 误差/% 误差/% 误差/%
1 30.21 30.31 0.33 34.42 13.94 56.36 60.22 6.84 69.93 24.07
2 74.14 77.51 4.54 80.29 8.29 140.87 151.18 7.32 158.24 12.33
3 186.12 184.49 ‒0.87 3.01 208.44 11.99 10.06 348.76 358.93 2.91 4.99 414.75 18.92 16.30
4 245.23 233.78 ‒4.66 257.79 5.12 443.64 428.52 ‒3.40 486.56 9.67
5 269.84 273.64 1.40 292.87 8.53 497.48 507.41 1.99 557.65 12.09
4 结 论 性研究 [J]. 力学学报,2022,54(11):3169-3180.
XUE Xiao,ZHANG Junhua,SUN Ying,et al. Vibrational
characteristics of honeycomb sandwich cantilever plate with
本文将波纹夹芯等效成正交各向异性板,基于
curved-wall core[J]. Chinese Journal of Theoretical and
三阶剪切变形理论构造了波纹夹芯板弯曲有限单元
Applied Mechanics,2022,54(11):3169-3180.
模型,并推导了相应参数的计算公式。对两种芯层
[5] 张博一,赵威,王理,等. 泡沫铝子弹高速撞击下铝基复
厚度的波纹夹芯板结构分别进行了单边固支和自由
合泡沫夹层板的动态响应 [J]. 爆炸与冲击,2017,37(4):
边界状态下的振动模态试验,且分别基于三阶和一
600-610.
阶剪切变形等效板模型,用有限元方法计算了波纹 ZHANG Boyi, ZHAO Wei, WANG Li, et al. Dynamic
夹芯板结构的前 5 阶固有频率和振型。与试验结果 response of aluminum matrix syntactic foams sandwich panel
对比发现,使用三阶剪切变形等效模型比一阶剪切 subjected to foamed aluminum projectile impact loading[J].
变形等效模型得到的结果具有更高的准确性和精 Explosion and Shock Waves,2017,37(4):600-610.
度,验证了本文提出的波纹夹芯板等效有限元模型 [6] 李华东,周振龙,陈国涛. 基于高阶剪切理论的复合材料
的正确性和有效性。采用三阶横向剪切变形理论研 格栅夹层板弯曲特性 [J]. 复合材料学报,2019,36(12):
究较厚芯层波纹夹板的自由振动时,计算结果与试 2745-2755.
LI Huadong, ZHOU Zhenlong, CHEN Guotao. Bending
验结果吻合较好,表明本文构造的波纹夹芯板弯曲
characteristic of composite grid sandwich plate based on high-
有限单元模型可有效应用于此类结构的振动分析和
order shear theory[J]. Acta Materiae Compositae Sinica,
计算。
2019,36(12):2745-2755.
[7] ZHANG Y W, YAN L L, ZHANG W B, et al. Metallic
参考文献: tube-reinforced aluminum honeycombs: compressive and
bending performances[J]. Composites Part B: Engineering,
[1] 王小明,魏强,潘曼. 等效刚度法计算波纹夹层板弯曲变 2019,171:192-203.
形与应力 [J]. 中国舰船研究,2021,16(2):90-98. [8] HOU S J,SHU C F,ZHAO S Y,et al. Experimental and
WANG Xiaoming, WEI Qiang, PAN Man. Calculation numerical studies on multi-layered corrugated sandwich panels
bending deflection and stress for corrugated core sandwich under crushing loading[J]. Composite Structures, 2015,
panels employing equivalent stiffness method[J]. Chinese 126:371-385.
Journal of Ship Research,2021,16(2):90-98. [9] 付珊珊,陈栋,时建纬,等. CFRP 面板-功能梯度蜂窝夹
[2] SHU C F, HOU S J. Theoretical prediction on corrugated 层板的抗低速冲击性能 [J]. 复合材料学报,2023,40(7):
sandwich panels under bending loads[J]. Acta Mechanica 4226-4236.
Sinica,2018,34(5):925-935. FU Shanshan,CHEN Dong,SHI Jianwei,et al. Low-veloc-
[3] 李永强,金志强,王薇,等. 四边简支条件下对称蜂窝夹 ity impact of functional gradient honeycomb sandwich plate
层板的弯曲振动分析 [J]. 机械工程学报,2008,44(5): with CFRP face sheets[J]. Acta Materiae Compositae Sinica,
165-169. 2023,40(7):4226-4236.
LI Yongqiang,JIN Zhiqiang,WANG Wei,et al. Flexural [10] 赵桂平,卢天健. 多孔金属夹层板在冲击载荷作用下的动
vibration analysis for symmetric honeycomb panels of simple 态响应 [J]. 力学学报,2008,40(2):194-206.
support boundary conditions[J]. Chinese Journal of Mechani- ZHAO Guiping,LU Tianjian. Dynamic response of cellular
cal Engineering,2008,44(5):165-169. metallic sandwich plates under impact loading[J]. Chinese
[4] 薛潇,张君华,孙莹,等. 曲壁蜂窝夹层悬臂板的振动特 Journal of Theoretical and Applied Mechanics, 2008,