Page 148 - 《振动工程学报》2025年第9期
P. 148

2078                               振     动     工     程     学     报                     第 38 卷


                                    表 5 波纹夹芯结构沿波纹方向单边固支状态下前                5 阶固有频率对比
              Tab. 5 Comparison  of  the  first  five  natural  frequencies  of  a  corrugated  sandwich  structure  with  one  side  fixed  along  the
                    machine-direction

                                     薄(夹芯)板                                         厚(夹芯)板
                    试验        三阶剪切模型              一阶剪切模型          试验        三阶剪切模型              一阶剪切模型
              阶次
                                       均方根                 均方根                       均方根                 均方根
                   频率/Hz 频率/Hz 误差/%           频率/Hz 误差/%         频率/Hz 频率/Hz 误差/%           频率/Hz 误差/%
                                       误差/%               误差/%                       误差/%                误差/%
                1   30.21   30.31  0.33        34.42  13.94        56.36  60.22  6.84        69.93  24.07
                2   74.14   77.51  4.54        80.29  8.29        140.87  151.18  7.32       158.24  12.33
                3  186.12  184.49  ‒0.87  3.01  208.44  11.99  10.06  348.76  358.93  2.91  4.99  414.75  18.92  16.30
                4  245.23  233.78  ‒4.66      257.79  5.12        443.64  428.52  ‒3.40      486.56  9.67
                5  269.84  273.64  1.40       292.87  8.53        497.48  507.41  1.99       557.65  12.09

              4    结     论                                          性研究   [J]. 力学学报,2022,54(11):3169-3180.
                                                                    XUE Xiao,ZHANG Junhua,SUN Ying,et al. Vibrational
                                                                    characteristics  of  honeycomb  sandwich  cantilever  plate  with
                  本文将波纹夹芯等效成正交各向异性板,基于
                                                                    curved-wall  core[J].  Chinese  Journal  of  Theoretical  and
              三阶剪切变形理论构造了波纹夹芯板弯曲有限单元
                                                                    Applied Mechanics,2022,54(11):3169-3180.
              模型,并推导了相应参数的计算公式。对两种芯层
                                                                [5]  张博一,赵威,王理,等. 泡沫铝子弹高速撞击下铝基复
              厚度的波纹夹芯板结构分别进行了单边固支和自由
                                                                    合泡沫夹层板的动态响应        [J]. 爆炸与冲击,2017,37(4):
              边界状态下的振动模态试验,且分别基于三阶和一
                                                                    600-610.
              阶剪切变形等效板模型,用有限元方法计算了波纹                                ZHANG  Boyi, ZHAO  Wei, WANG  Li, et  al.  Dynamic
              夹芯板结构的前        5  阶固有频率和振型。与试验结果                      response of aluminum matrix syntactic foams sandwich panel
              对比发现,使用三阶剪切变形等效模型比一阶剪切                                subjected  to  foamed  aluminum  projectile  impact  loading[J].
              变形等效模型得到的结果具有更高的准确性和精                                 Explosion and Shock Waves,2017,37(4):600-610.
              度,验证了本文提出的波纹夹芯板等效有限元模型                            [6]  李华东,周振龙,陈国涛. 基于高阶剪切理论的复合材料
              的正确性和有效性。采用三阶横向剪切变形理论研                                格栅夹层板弯曲特性       [J]. 复合材料学报,2019,36(12):
              究较厚芯层波纹夹板的自由振动时,计算结果与试                                2745-2755.
                                                                    LI  Huadong, ZHOU  Zhenlong, CHEN  Guotao.  Bending
              验结果吻合较好,表明本文构造的波纹夹芯板弯曲
                                                                    characteristic of composite grid sandwich plate based on high-
              有限单元模型可有效应用于此类结构的振动分析和
                                                                    order  shear  theory[J].  Acta  Materiae  Compositae  Sinica,
              计算。
                                                                    2019,36(12):2745-2755.
                                                                [7]  ZHANG  Y  W, YAN  L  L, ZHANG  W  B, et  al.  Metallic
              参考文献:                                                 tube-reinforced  aluminum  honeycombs: compressive  and
                                                                    bending  performances[J].  Composites  Part  B: Engineering,
              [1]  王小明,魏强,潘曼. 等效刚度法计算波纹夹层板弯曲变                       2019,171:192-203.
                  形与应力   [J]. 中国舰船研究,2021,16(2):90-98.          [8]  HOU S J,SHU C F,ZHAO S Y,et al. Experimental and
                  WANG  Xiaoming, WEI  Qiang, PAN  Man.  Calculation  numerical studies on multi-layered corrugated sandwich panels
                  bending  deflection  and  stress  for  corrugated  core  sandwich  under  crushing  loading[J].  Composite  Structures, 2015,
                  panels  employing  equivalent  stiffness  method[J].  Chinese  126:371-385.
                  Journal of Ship Research,2021,16(2):90-98.    [9]  付珊珊,陈栋,时建纬,等. CFRP       面板-功能梯度蜂窝夹
              [2]  SHU  C  F, HOU  S  J.  Theoretical  prediction  on  corrugated  层板的抗低速冲击性能  [J]. 复合材料学报,2023,40(7):
                  sandwich  panels  under  bending  loads[J].  Acta  Mechanica  4226-4236.
                  Sinica,2018,34(5):925-935.                        FU Shanshan,CHEN Dong,SHI Jianwei,et al. Low-veloc-
              [3]  李永强,金志强,王薇,等. 四边简支条件下对称蜂窝夹                       ity  impact  of  functional  gradient  honeycomb  sandwich  plate
                  层板的弯曲振动分析        [J]. 机械工程学报,2008,44(5):          with CFRP face sheets[J]. Acta Materiae Compositae Sinica,
                  165-169.                                          2023,40(7):4226-4236.
                  LI Yongqiang,JIN Zhiqiang,WANG Wei,et al. Flexural  [10]  赵桂平,卢天健. 多孔金属夹层板在冲击载荷作用下的动
                  vibration analysis for symmetric honeycomb panels of simple  态响应  [J]. 力学学报,2008,40(2):194-206.
                  support boundary conditions[J]. Chinese Journal of Mechani-  ZHAO Guiping,LU Tianjian. Dynamic response of cellular
                  cal Engineering,2008,44(5):165-169.               metallic  sandwich  plates  under  impact  loading[J].  Chinese
              [4]  薛潇,张君华,孙莹,等. 曲壁蜂窝夹层悬臂板的振动特                       Journal  of  Theoretical  and  Applied  Mechanics, 2008,
   143   144   145   146   147   148   149   150   151   152   153