Page 97 - 卫星导航2021年第1-2合期
P. 97

Shi et al. Satell Navig             (2021) 2:5                                        Page 13 of 13





            Conclusion                                        Fan, M., Hu, X., Dong, G., Huang, Y., Cao, J., Tang, C., et al. (2015). Orbit improve-
            To  evaluate the autonomous navigation  performance  of   ment for Chang’E-5T lunar returning probe with GNSS technique.
                                                                 Advances in Space Research, 56(11), 2473–2482. https ://doi.org/10.1016/j.
            a spacecraft using the latest multi-GNSSs, two important   asr.2015.09.010.
            stages in the CZ-5 launch process of typical GEO satellites   Jing, S., Zhan, X., Lu, J., Feng, S., & Ochieng, W. (2014). Characterisation of GNSS
            (Shijian-20) via SSTO are analyzed in this paper. Te simu-  space service volume. Journal of Navigation, 68, 107–125. https ://doi.
                                                                 org/10.1017/S0373 46331 40004 72.
            lation results illustrate that the GEO/IGSO navigation sat-  Kelso, D. T. S. (2020). NORAD two-line element sets current data. https ://celes trak.
            ellites of BDS can efectively increase the number of visible   com/NORAD /eleme nts/.  Accessed 26 Oct 2020.
            satellites, and improve the PDOP in the SSTO and GEO,   Liu, H., Cao, J., Cheng, X., Peng, J., & Geshi, T. (2016). The data processing and
                                                                 analysis for the CE-5T1 GNSS experiment. Advances in Space Research, 59,
            especially for the GEO spacecraft on the opposite side of   895–906. https ://doi.org/10.1016/j.asr.2016.06.035.
            Asia-Pacifc region. For four multi-GNSS solutions, the   Liu, H., Cheng, X., Geshi, T., & Peng, J. (2017). GNSS performance research for
                                                                 MEO GEO, and HEO. https ://doi.org/10.1007/978-981-10-4594-3_4.
            percentage of the time, when the positions in SSTO and   Lorga, J. F. M., Silva, P. F., Dovis, F., Di Cintio, A., Kowaltschek, S., Jimenez, D., et al.
            GEO are solvable, reaches 50% and 97.2% (GEO at 240°),   (2010). Autonomous orbit determination for future GEO and HEO missions.
            97.0% (GEO at 0°), 52.9% (GEO at 25°), respectively, and   https ://doi.org/10.1109/NAVIT EC.2010.57080 28
            the receiver can still track 4 or more satellites near apogee   Marmet, F.-X., Maureau, J., Calaprice, M., & Aguttes, J. P. (2015). GPS/Galileo
            for a long time. At the same time the PDOP performance is   navigation in GTO/GEO orbit. Acta Astronautica, 117, 263–276. https ://doi.
                                                                 org/10.1016/j.actaa stro.2015.08.008.
            much better than the traditional 2 or 3 multi-GNSS solu-  Montenbruck, O., Steigenberger, P., & Hauschild, A. (2018). Multi-GNSS
            tions because of BDS. Te results demonstrate that auton-  signal-in-space range error assessment—Methodology and results.
                                                                 Advances in Space Research, 61(12), 3020–3038. https ://doi.org/10.1016/j.
            omous navigation of a spacecraft based on latest GNSS is a   asr.2018.03.041.
            feasible solution. With the employment of all BDS-3 satel-  Moreau, M. C., Axelrad, P., Garrison, J. L., & Long, A. (2000). GPS receiver
            lites in 2020 or even GPS III in the future, the autonomous   architecture and expected performance for autonomous naviga-
                                                                 tion in high earth orbits. Navigation, 47(3), 190–204. https ://doi.
            navigation performance will be further improved.     org/10.1002/j.2161-4296.2000.tb002 13.x.
                                                              Odijk, D., Nadarajah, N., Zaminpardaz, S., & Teunissen, P. J. G. (2017). GPS,
            Acknowledgements                                     Galileo, QZSS and IRNSS diferential ISBs: Estimation and application. GPS
            Not applicable’ for that section.                    Solutions, 21(2), 439–450. https ://doi.org/10.1007/s1029 1-016-0536-y.
                                                              Palmerini, G. (2014). GNSS software receiver as navigation sensor in very high
            Authors’ contributions                               orbits. https ://doi.org/10.1109/Metro AeroS pace.2014.68658 90.
            XZ proposed the idea, TS carried out the programming and calculation; TS   Parkinson, B. W. (1995). GPS error analysis. Global Positioning System: Theory and
            wrote the draft, XZ and LX edited and revised the manuscript. All authors read   Applications, 469–483. https ://ci.nii.ac.jp/naid/10018 23524 1/en/.
            and approved the fnal manuscript.                Ramakrishnan, S., Reid, T., & Enge, P. (2013b). Leveraging the L1Composite Sig-
                                                                 nal to enable autonomous navigation at GEO and beyond. Proceedings
            Availability of data and materials                   of the 26th International Technical Meeting of The Satellite Division of the
            The datasets used and/or analyzed during the current study are available from   Institute of Navigation (ION GNSS+ 2013)
            the corresponding author on reasonable request.   Sadman, A. A. M. S., & Hossam-E-Haider, M. (2019, 18–20 Dec. 2019). GNSS
                                                                 position accuracy considering GDOP and UERE for diferent constellation
            Competing interests                                  over Bangladesh. In 2019 22nd International conference on computer and
            The authors declare that they have no competing interests.  information technology (ICCIT).
                                                              Steigenberger, P., Thölert, S., & Montenbruck, O. (2017). GNSS satellite transmit
            Received: 30 July 2020   Accepted: 14 January 2021   power and its impact on orbit determination. Journal of Geodesy, 92,
                                                                 609–624. https ://doi.org/10.1007/s0019 0-017-1082-2.
                                                              Teunissen, P. J. G., & Montenbruck, O. (2017). Springer handbook of global
                                                                 navigation satellite systems. Berlin: Springer. https ://doi.org/10.1007/978-
                                                                 3-319-42928 -1.
            References                                        Thoelert, S., Antreich, F., Enneking, C., & Meurer, M. (2019). BeiDou 3 signal qual-
            Acharya, R. (2014). Chapter 7—Errors and error corrections. In R. Acharya (Ed.),   ity analysis and its impact on users. ION ITM, Reston, Virginia. https ://elib.dlr.
               Understanding satellite navigation (pp. 243–279). London: Academic Press.   de/12654 9/. Accessed 23 April 2020.
               https ://doi.org/10.1016/B978-0-12-79994 9-4.00007 -5.  Wang, M. (2019). Research and development of navigation signal processing
            Amiri, S., & Mehdipour, M. (2007, 14–16 June 2007). Accurate Doppler   technology for high-orbit spacecraft. In The 10th CHINA satellite navigation
               frequency shift estimation for any satellite orbit. In 2007 3rd International   confernce, Issue.
               conference on recent advances in space technologies.  Xi, Z., Changjian, L., Fan, Z., Qing, W., & Xiaohua, H. (2019). The evaluation and
            Balbach, O., Eissfeller, B., Hein, G. W., Enderle, W., Schmidhuber M., Lemke, N.   comparative analysis of four main GNSS broadcast ephemeris accuracy,
               Tracking GPS above GPS satellite altitude: frst results of the GPS experi-  1–13. https ://doi.org/10.13203 /j.whugi s2019 0473
               ment on the HEO mission Equator-S. In: IEEE 1998 Position Location and   Zentgraf, P., Berge, S., Chasset, C., Filippe, H., Gottzein, E., Gutiérrez-Cañas, I.,
               Navigation Symposium (Cat. No.98CH36153), Palm Springs, CA, USA,   et al. (2010). Preparing the GPS experiment for the small geo mission. In
               1998, pp. 243–249. https ://doi.org/10.1109/PLANS .1998.67006 5.  33rd annual AAS guidance and control conference, Breckenridge, CO. https ://
            Capuano, V., Basile, F., Botteron, C., & Farine, P.-A. (2016). GNSS-based Orbital   elib.dlr.de/69086 /. Accessed 7 May 2020.
               Filter for Earth Moon Transfer Orbits. Journal of Navigation, 69(4), 745–764.   Zou, D., Cui, Y., Zhang, Q., Liu, Y., Zhang, J., Cheng, X., et al. (2019). Orbit
               https ://doi.org/10.1017/S0373 46331 50008 43.    determination algorithm and performance analysis of high-orbit space-
            CSNO. (2019). Development of the BeiDou navigation satellite system. China   craft based on GNSS. IET Communications, 13, 3377–3382. https ://doi.
               Satellite Navigation Ofce. http://www.beido u.gov.cn/xt/gfxz/20191 2/  org/10.1049/iet-com.2019.0434.
               P0201 91227 43056 54554 78.pdf. Accessed 12 June 2020.
            Diggelen, F. (2009). A-GPS: Assisted GPS, GNSS, and SBAS. Norwood: Artech
               House.
   92   93   94   95   96   97   98   99   100   101   102