Page 51 - 卫星导航2021年第1-2合期
P. 51

Du et al. Satell Navig             (2021) 2:3                                           Page 18 of 22





            Received: 17 October 2019   Accepted: 28 December 2020  Cai, C., Liu, Z., Xia, P., & Dai, W. (2012). Cycle slip detection and repair for
                                                                  undiferenced GPS observations under high ionospheric activity. GPS
                                                                  Solutions, 17(2), 247–260.
                                                              Caissy, M., Agrotis, L., Weber, G., Hernandez‑Pajares, M., & Hugentobler, U.
                                                                  (2012). Coming soon: The International GNSS Real‑Time Service. GPS
            References                                            World, 23(6), 52–58.
            Banville, S., & Langley, R. B. (2012). Cycle‑slip correction for single‑frequency   Carcanague, S. (2012). Real‑time geometry‑based cycle slip resolution
                PPP. In Proceedings of the 25th international technical meeting of the satel-  technique for single‑frequency PPP and RTK. In Proceedings of the 25th
                lite division of the institute of navigation (ION GNSS 2012), Nashville TN,   international technical meeting of the satellite division of the institute
                17–21 September (pp. 3753–3761).                  of navigation (ION GNSS 2012), Nashville TN, 17–21 September (pp.
            Banville, S., Langley, R. B., Saito, S., & Yoshihara, T. (2010). Handling cycle slips   1136–1148).
                in GPS data during ionospheric plasma bubble events. Radio Science,   Chen, K., & Gao, Y. (2005). Real‑time precise point positioning using single
                45(6), 1–14.                                      frequency data. In Proceedings of the 18th international technical meeting
            Becker, M., Zeimetz, P., & Schönemann, E. (2010). Anechoic chamber calibra‑  of the satellite division of the institute of navigation (ION GNSS 2005), Long
                tions of phase center variations for new and existing GNSS signals and   Beach, CA, 13–16 September (pp. 1514–1523).
                potential impacts in IGS processing. In Proceedings of the IGS workshop   Cheng, S., Wang, J., & Peng, W. (2017). Statistical analysis and quality control
                2010, Newcastle upon Tyne, England, 28 June–2 July (pp. 1–44).  for GPS fractional cycle bias and integer recovery clock estimation with
            Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., Owen, S., et al.   raw and combined observation models. Advances in Space Research,
                (2010). Single receiver phase ambiguity resolution with GPS data.   60(12), 2648–2659.
                Journal of Geodesy, 84(5), 327–337.           Cheng, C., Zhao, Y., Li, L., Cheng, J., & Sun, X. (2018). Preliminary analysis of URA
            Bhatti, U. I., & Ochieng, W. Y. (2007). Failure modes and models for integrated   characterization for GPS real‑time precise orbit and clock products.
                GPS/INS systems. Journal of Navigation, 60(2), 327–348.  In 2018 IEEE/ION position, location and navigation symposium (PLANS),
            Bilich, A., & Mader, G. L. (2010). GNSS absolute antenna calibration at the   Monterey, CA, 23–26 April (pp. 615–621).
                national geodetic survey. In Proceedings of the 23rd international techni-  Choy, S., Bisnath, S., & Rizos, C. (2017). Uncovering common misconceptions
                cal meeting of the satellite division of the institute of navigation (ION GNSS   in GNSS Precise Point Positioning and its future prospect. GPS Solutions,
                2010), Portland, OR, 21–24 September (pp. 1369–1377).  21, 13–22.
            Binjammaz, T., Al‑Bayatti, A., & Al‑Hargan, A. (2013). GPS integrity monitoring   Collins, P. (2008). Isolating and estimating undiferenced GPS integer ambigui‑
                for an intelligent transport system. In 10th Workshop on positioning,   ties. In Proceedings of the 2008 national technical meeting of the institute
                navigation and communication (WPNC 2013), Dresden, Germany, 20–21   of navigation, San Diego, CA, 28–30 January (pp. 720–732).
                March (pp. 1–6).                              Collins, P., Bisnath, S., Lahaye, F., & Héroux, P. (2010). Undiferenced GPS
            Bisnath, S., Aggrey, J., Seepersad, G., & Gill, M. (2018). Examining precise point   ambiguity resolution using the decoupled clock model and ambiguity
                positioning now and in the future. GPS World, 29(3), 41–48.  datum fxing. Navigation, 57, 123–135.
            Bisnath, S., & Gao, Y. (2009). Current state of precise point positioning and   Collins, P., & Langley, R. (1998). The residual tropospheric propagation delay:
                future prospects and limitations. In M. G. Sideris (Ed.), Observing our   How bad can it get? In: Proceedings of the 11th international technical
                changing earth. proceedings of the international association of geodesy   meeting of the satellite division of the Institute of Navigation (ION GPS
                symposia (Vol. 133, pp. 615–623). Springer, Berlin.  1998), Nashville, TN, 15–18 September (pp. 729–738).
            Blanch, J., Gunning, K., Walter, T., De Groot, L., & Norman, L. (2019). Reducing   Conker, R. S., El‑Arini, M. B., Hegarty, C. J., & Hsiao, T. (2003). Modeling the
                computational load in solution separation for Kalman flters and an   efects of ionospheric scintillation on gps/satellite‑based augmentation
                application to PPP integrity. In Proceedings of the 2019 international   system availability. Radio Science, 38, 1.
                technical meeting of the institute of navigation, Reston, Virginia, 28–31   Dach, R., Schär, S., Hugentobler, U., Schildknecht, T., & Gäde, A. (2006). Com‑
                January (pp. 720–729).                            bined multi‑system GNSS analysis for time and frequency transfer. In
            Blanch, J., Walker, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., et al. (2015). Baseline   Proceedings of the 20th European frequency and time forum, Braunsch-
                Advanced RAIM user algorithm and possible improvements. IEEE Trans-  weig, Germany, 27–30 March (pp. 530–537).
                actions on Aerospace and Electronic Systems, 51(1), 713–732.  Dai, Z., Knedlik, S., & Lofeld, O. (2009). Instantaneous triple‑frequency GPS
            Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., & Spletter, A. (2012).   cycle‑slip detection and repair. International Journal of Navigation
                Advanced RAIM user algorithm description: integrity support message   and Observation, 2009, 1–15.
                processing, fault detection, exclusion, and protection level calculation.   Datta‑Barua, S., Doherty, P., Delay, S., Dehel, T., & Klobuchar, J. A. (2003).
                In Proceedings of the 25th international technical meeting of the satellite   Ionospheric scintillation efects on single and dual frequency GPS
                division of the institute of navigation (ION GNSS 2012), Nashville TN, 17–21   positioning. In Proceedings of the 16th international technical meeting
                September (pp. 2828–2849).                        of the satellite division of the institute of navigation (ION GPS/GNSS
            Blanch, J., Walter, T., Norman, L., Gunning, K., & de Groot, L. (2020). Solution   2003), Portland, OR, 9–12 September (pp. 336–346).
                separation‑based FD to mitigate the efects of local threats on PPP   de Groot, L., Infante, E., Jokinen, A., Kruger, B., & Norman, L. (2018). Precise
                integrity. In 2020 IEEE/ION position, location and navigation symposium   positioning for automotive with mass market GNSS chipsets. In
                (PLANS), Portland, Oregon, 20–23 April (pp. 1085–1092).  Proceedings of the 31st international technical meeting of the satellite
            Braasch, M. S. (1992). On the characterization of multipath errors in satellite‑  division of the institute of navigation (ION GNSS + 2018), Miami, Florida,
                based precision approach and landing systems. PhD thesis, Depart‑  September 24–28, 2018 (pp. 596–610).
                ment of Electrical and Computer Engineering, Ohio University, Athens,   Dıaz, S. P., Joerger, M., Pervan, B., Rippl, M., & Martini, I. (2014). Analysis
                Ohio, June, 1992.                                 of ARAIM against EOP GPS‑Galileo faults on LPV‑200 precision
            Brenner, M. (1996). Integrated GPS/inertial fault detection availability. Naviga-  approach. In Proceedings of the 27th international technical meeting of
                tion, 43(2), 111–130.                             the satellite division of the Institute of Navigation. The Institute of Navi-
            Brown, R. G. (1996). Receiver autonomous integrity monitoring. In B. W.   gation, Tampa, Florida, September 8–12, 2014 (pp. 3575–3586).
                Parkinson & J. J. Spilker Jr. (Eds.), Global positioning system: Theory and   Ding, W., Tan, B., Chen, Y., Teferle, F. N., & Yuan, Y. (2018). Evaluation of a
                applications (Vol. II, pp. 143–165). TX: American Institute of Aeronautics   regional real‑time precise positioning system based on GPS/BeiDou
                and Astronautics.                                 observations in Australia. Advances in Space Research, 61(3), 951–961.
            Bryant, R. (2016). Positioning challenges in automation. Presentation at   https ://doi.org/10.1016/j.asr.2017.11.009.
                international global navigation satellite systems association IGNSS   Dovis, F., Ruotsalainen, L., Toledo‑Moreo, R., Kassas, Z. Z. M., & Gikas, V.
                symposium 2016, Sydney, Australia, 6–8 December.  (2020). Recent advancement on the use of global navigation satellite
            Bryant, R. (2019). Q&A with rod bryant. Position, 99, 38–40.  system‑based positioning for intelligent transport systems [guest
                                                                  editorial]. IEEE Intelligent Transportation Systems Magazine, 12(3), 6–9.
   46   47   48   49   50   51   52   53   54   55   56