Page 55 - 卫星导航2021年第1-2合期
P. 55
Du et al. Satell Navig (2021) 2:3 Page 22 of 22
Viðarsson, L., Pullen, S., Green, G., & Enge, P. (2001). Satellite autonomous of the 18th international technical meeting of the satellite division of the
integrity monitoring and its role in enhancing GPS user performance. In Institute of Navigation (ION GNSS 2005), Long Beach, CA, 13–16 Septem‑
Proceedings of the 14th international technical meeting of the satellite divi- ber (pp. 2584–2594).
sion of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, 11–14 xAUTO technology. (2017). High‑defnition locator. Retrieved Feburary, 1, 2019,
September (pp. 11–14). from https ://www.mitsu bishi elect ric.co.jp/autom otive /tms20 17/engli
Villiger, A., Schaer, S., Dach, R., Prange, L., & Jaeggi, A. (2016). Handling and sh/xauto /pdf/high‑defn ition _locat or.pdf.
estimation of GNSS code biases‑latest developments at CODE. In Inter- Ye, F., Yuan, Y., Tan, B., & Ou, J. (2017). A robust method to detect Beidou Navi‑
national GNSS service workshop 2016, Sydney, Australia, 8–12 February. gation Satellite System orbit maneuvering/anomalies and its applica‑
Walter, T. & Enge, P. (1995). Weighted RAIM for precision approach. In Proceed- tions to precise orbit determination. Sensors, 17(5), 1129.
ings of the 8th international technical meeting of the satellite division of the Yu, X., Wang, J., & Gao, W. (2017). An alternative approach to calculate the
institute of navigation (ION GPS 1995), Palm Springs, CA, 12–15 September posterior probability of GNSS integer ambiguity resolution. Journal of
(pp. 1995–2004). Geodesy, 91, 295–305.
Wang, J., Stewart, M., & Tsakiri, M. (1998). A discrimination test procedure for Yunck, T. P. (1992). Coping with the Atmosphere and Ionosphere in Precise Sat‑
ambiguity resolution on‑the‑fy. Journal of Geodesy, 72(11), 644–653. ellite and Ground Positioning. Geophysical Monograph Series, 73, 1–16.
Weber, G., Mervart, L., Lukes, Z., Rocken, C., & Dousa, J. (2007). Real‑time clock Zhang, Y., & Gao, Y. (2008). Integration of INS and un‑diferenced GPS measure‑
and orbit corrections for improved point positioning via NTRIP. In ments for precise position and attitude determination. The Journal of
Proceedings of the 20th international technical meeting of the satellite divi- Navigation, 61(1), 87–97.
sion of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, 25–28 Zhang, X., Guo, F., & Zhou, P. (2013). Improved Precise Point Positioning in the
September (pp. 1992–1998). presence of ionospheric scintillation. GPS Solutions, 18, 51–60.
Weinbach, U., Brandl, M., Chen, X., Landau, H., Pastor, F., Reussner, N., et al. Zhang, X., & Li, X. (2012). Instantaneous re‑initialization in real‑time kinematic
®
®
(2018). Integrity of the Trimble CenterPoint RTX correction service. PPP with cycle slip fxing. GPS Solutions, 16, 315–327.
In Proceedings of the 31st international technical meeting of the satellite Zhang, X., & Li, P. (2016). Benefts of the third frequency signal on cycle slip
division of the Institute of Navigation (ION GNSS + 2018), Miami, Florida, correction. GPS Solutions, 20, 451–460.
24–28 September (pp. 1902–1909). Zhang, B., Teunissen, P. J. G., & Yuan, Y. (2017). On the short‑term temporal
Weiss, M., Shome, P., & Beard, R. (2010). On‑board Signal Integrity for GPS. In variations of GNSS receiver diferential phase biases. Journal of Geodesy,
Proceedings of the 23rd international technical meeting of the satellite 91, 563–572.
division of the Institute of Navigation (ION GNSS 2010), Portland, OR, 21–24 Zhang, L., Yang, H., Gao, Y., Yao, Y., & Xu, C. (2018). Evaluation and analysis of
September (pp. 3199–3212). real‑time precise orbits and clocks products from diferent IGS analysis
Weiss, J. P., Steigenberger, P., & Springer, T. (2017). Orbit and clock product gen‑ centers. Advances in Space Research, 61(12), 2942–2954.
eration. In P. J. G. Teunissen, & O. Montenbruck (Eds.), Springer handbook Zhu, N., Marais, J., Bétaille, D., & Berbineau, M. (2018). GNSS position integrity
of global navigation satellite systems (pp. 983–1010). Berlin: Springer. in urban environments: A review of literature. IEEE Transactions on Intel-
Wieser, A. (2004). Failure scenarios to be considered with kinematic high preci‑ ligent Transportation Systems, 19(9), 2762–2778.
sion relative GNSS positioning. In Proceedings of the 17th international Zumberge, J., Hefin, M., Jeferson, D., Watkins, M., & Webb, F. H. (1997). Precise
technical meeting of the satellite division of the Institute of Navigation (ION Point Positioning for the efcient and robust analysis of GPS data
GNSS 2004), Long Beach, CA, 21–24 September (pp. 1448–1459). from large networks. Journal of Geophysical Research: Solid Earth, 102,
Witchayangkoon, B. (2000). Elements of GPS precise point positioning. PhD 5005–5017.
thesis, Graduate school (Spatial Information Science and Engineering),
University of Maine, Orono, ME, December, 2000. Publisher’s Note
Wu, J., Wu, S., Hajj, G., Bertiger, W., & Lichten, S. (1993). Efects of antenna orien‑
tation on GPS carrier phase. Manuscripta Geodetica, 18(2), 91–98. Springer Nature remains neutral with regard to jurisdictional claims in pub‑
Wübbena, G., Schmitz, M., & Bagge, A. (2005). PPP‑RTK: Precise Point Position‑ lished maps and institutional afliations.
ing using state‑space representation in RTK networks. In Proceedings