Page 54 - 卫星导航2021年第1-2合期
P. 54

Du et al. Satell Navig             (2021) 2:3                                         Page 21 of 22





            Norman, L., Infante, E., & de Groot, L. (2019). Integrity performance for precise   Seepersad, G., & Bisnath, S. (2015). Reduction of PPP convergence period
                positioning in automotive. In Proceedings of the 32nd international   through pseudorange multipath and noise mitigation. GPS Solutions,
                technical meeting of the satellite division of the Institute of Navigation (ION   19, 369–379.
                GNSS + 2019), Miami, Florida, 16–20 September (pp. 1653–1663).  Seepersad, G., & Bisnath, S. (2016). Examining the interoperability of precise
            Ochieng, W. Y., Sauer, K., Walsh, D., Brodin, G., Grifn, S., & Denney, M. (2003).   point positioning products. GPS World, 27(3), 50–56.
                GPS integrity and potential impact on aviation safety. Journal of Naviga-  Shi, C., Gu, S., Lou, Y., & Ge, M. (2012). An improved approach to model iono‑
                tion, 56, 51–65.                                  spheric delays for single‑frequency precise point positioning. Advances
            Ouyang, C., Shi, J., Shen, Y., & Li, L. (2019). Six‑year BDS‑2 broadcast navigation   in Space Research, 49, 1698–1708.
                message analysis from 2013 to 2018: Availability, anomaly, and SIS UREs   Shi, J., Xu, C., Guo, J., & Gao, Y. (2014). Local troposphere augmentation for real‑
                assessment. Sensors, 19(12), 2767.                time precise point positioning. Earth, Planets and Space, 66, 30.
            Øvstedal, O. (2002). Absolute positioning with single‑frequency GPS receivers.   Speidel, J., Tossaint, M., Wallner, S., & Ávila‑Rodríguez, J. Á. (2013). Integrity for
                GPS Solutions, 5, 33–44.                          aviation: Comparing future concepts. Inside GNSS, 4, 54–64.
            Parkinson, B. W., & Axelrad, P. (1988). Autonomous GPS integrity monitoring   Stephenson, S., Meng, X., Moore, T., Baxendale, A., & Ford, T. (2011). Accuracy
                using the pseudorange residual. Navigation, 35, 255–274.  requirements and benchmarking position solutions for intelligent
            Pasnikowski, M. (2015). Challenges for integrity in navigation of high precision.   transportation location based services. In Proceedings of the 8th inter-
                In Proceedings of the 28th international technical meeting of the satellite   national symposium on location‑based services, Vienna, Austria, 21–23
                division of the Institute of Navigation (ION GNSS + 2015), Tampa, Florida,   November (pp. 21–23).
                14–18 September (pp. 2983–2994).              Teunissen, P. J. G. (1990). An integrity and quality control procedure for use in
            Pesyna, K. M. J., Heath, R. W., & Humphreys, T. E. (2014). Centimeter positioning   multi sensor integration. In Proceedings of the 3rd international technical
                with a smartphone‑quality GNSS antenna. In Proceedings of the 27th   meeting of the satellite division of the Institute of Navigation (ION GPS
                international technical meeting of the satellite division of the Institute of   1990), Colorado Spring, CO, 19–21 September (pp. 513–522).
                Navigation (ION GNSS + 2014), Tampa, Florida, 8–12, September (pp.   Teunissen, P. J. G. (2003). Integer aperture GNSS ambiguity resolution. Artifcial
                1568–1577).                                       Satellites, 38(3), 79–88.
            Phelts, R. E., Gunning, K., Blanch, J., & Walter, T. (2020). Evaluating the applica‑  Teunissen, P. J. G. (2005a). Integer aperture bootstrapping: a new GNSS ambi‑
                tion of PPP techniques to ARAIM using fight data. In Proceedings of the   guity estimator with controllable fail‑rate. Journal of Geodesy, 79(6–7),
                2020 international technical meeting of the Institute of Navigation, San   389–397.
                Diego, California, 21–24 January (pp. 379–385).  Teunissen, P. J. G. (2005b). Integer aperture least‑squares estimation. Artifcial
            Reid, T. G., Houts, S. E., Cammarata, R., Mills, G., Agarwal, S., Vora, A., et al. (2019).   Satellites, 40(3), 149–160.
                Localization requirements for autonomous vehicles. arXiv :1906.01061   Teunissen, P. J. G., Odijk, D., & Zhang, B. (2010). PPP‑RTK: Results of CORS
                v1.                                               network‑based PPP with integer ambiguity resolution. Journal of Aero-
            Rodriguez‑Solano, C., Brandl, M., Chen, X., Herwig, M., Kipka, A., Kreikenbohm,   nautics, Astronautics and Aviation, Series A, 42(4), 223–230.
                P., et al. (2019). Integrity real‑time performance of the trimble RTX cor‑  Thomas, M., Norton, J., Jones, A., Hopper, A., Ward, N., Cannon, P., et al. (2011).
                rection service. In Proceedings of the 32nd international technical meeting   Global navigation space systems: Reliance and vulnerabilities. The Royal
                of the satellite division of the Institute of Navigation (ION GNSS + 2019),   Academy of Engineering, London, March 2011. Retrieved January,
                Miami, Florida, 16–20 September (pp. 485–507).    7, 2019, from https ://www.raeng .org.uk/publi catio ns/repor ts/globa
            Romay, M. M., & Lainez, M. D. (2012). Integrity for advanced precise positioning   l‑navig ation ‑space ‑syste ms.
                applications. In Proceedings of the 25th international technical meeting   Thombre, S., Bhuiyan, M. Z. H., Eliardsson, P., Gabrielsson, B., Pattinson, M.,
                of the satellite division of the Institute of Navigation (ION GNSS 2012),   Dumville, M., et al. (2017). GNSS threat monitoring and reporting: Past,
                Nashville TN, 17–21 September (pp. 2742–2758).    present, and a proposed future. Journal of Navigation, 71, 513–529.
            RTCA. (2006). Minimum operational performance standards for global positioning   Tiberius, C. & De Jonge, P. (1995). Fast positioning using the LAMBDA method.
                system/wide area augmentation system airborne equipment, RTCA DO-  In Proceedings DSNS‑95, Bergen, Norway, 24–28 April, paper 30.
                229D. Washington, D.C.: RTCA Inc.             Tobías, G., Calle, J. D., Navarro, P., Rodríguez, I., & Rodríguez, D. (2014). mag‑
            Salós, D., Macabiau, C., Martineau, A., Bonhoure, B., & Kubrak, D. (2010). Analysis   icGNSS’ real‑time POD and PPP multi‑GNSS service. In Proceedings of the
                of GNSS integrity requirements for road user charging applications.   27th international technical meeting of the satellite division of the Institute
                In 5th ESA workshop on satellite navigation technologies and European   of Navigation (ION GNSS + 2014), Tampa, Florida, 8–12 September (pp.
                workshop on GNSS signals (NAVITEC 2010), 8–10 December, Noordwijk   1046–1055).
                (pp. 1–8).                                    U.S. Department of Defense. (2020). Global positioning system standard posi‑
            SBAS Ionospheric Working Group. (2010). Efect of ionospheric scintillations on   tioning service performance standard (5th edition). Retrieved May 11,
                GNSS—a white paper. Retrieved January, 7, 2019, from http://web.stanf   2020, from https ://www.navce n.uscg.gov/pdf/gps/genin fo/2020S PSPer
                ord.edu/group /scpnt /gpsla b/websi te_fles /sbas‑ion_wg/sbas_iono_  forma nceSt andar dFINA L.pdf.
                scint illat ions_white _paper .pdf.           U.S. Department of Defense, U.S. Department of Homeland Security, & U.S.
            Schmid, R., Rothacher, M., Thaller, D., & Steigenberger, P. (2005). Absolute phase   Department of Transportation. (2008). 2008 Federal radionavigation
                center corrections of satellite and receiver antennas. GPS Solutions, 9,   plan. Retrieved May 12, 2019, from https ://www.navce n.uscg.gov/
                283–293.                                          pdf/2008_Feder al_Radio navig ation _Plan.pdf.
            Schmid, R., Steigenberger, P., Gendt, G., Ge, M., & Rothacher, M. (2007). Genera‑  van Dyke, K., Kovach, K., Lavrakas, J., Fernow, J. P., Carroll, J, Kraemer, J., et al.
                tion of a consistent absolute phase‑center correction model for GPS   (2003). GPS integrity failure modes and efects analysis. In Proceed-
                receiver and satellite antennas. Journal of Geodesy, 81, 781–798.  ings of the 2003 national technical meeting of the Institute of Navigation,
            Schubert, F. M., Wendel, J., Soualle, F., Mink, M., Carcanague, S., Ioannides, R.,   Anaheim, CA, 22–24 January (pp. 689–703).
                et al. (2014). Integrity of navigation for land users: Study concept and   van Nee DJR. (1995). Multipath and multi‑transmitter interference in spread‑
                simulator architecture. In The 7th ESA workshop on satellite navigation   spectrum communication and navigation systems. PhD thesis, Faculty
                technologies, NAVITEC 2014, Noordwijk, 3–5 December 2014.  of Electrical Engineering, Delft University of Technology, Delft, The
            Seepersad, G. (2018). Improving reliability and assessing performance of global   Netherlands, 1995.
                navigation satellite system precise point positioning ambiguity resolu‑  Verhagen, S. (2004). Integer ambiguity validation: An open problem? GPS Solu-
                tion. PhD thesis, Graduate Programme in Earth and Space Science, York   tions, 8(1), 36–43.
                University, Toronto, ON.                      Verhagen, S. (2005). The GNSS integer ambiguities: Estimation and validation.
            Seepersad, G. & Bisnath, S. (2013). Integrity monitoring in precise point posi‑  PhD thesis, Delft Institute of Earth Observation and Space Systems,
                tioning. In Proceedings of the 26th international technical meeting of the   Delft University of Technology.
                satellite division of the Institute of Navigation (ION GNSS 2013), Nashville,   Verhagen, S., & Teunissen, P. J. G. (2013). The ratio test for future GNSS ambigu‑
                Tennessee, 16–20 September (pp. 1164–1175).       ity resolution. GPS Solutions, 17, 535–548.
   49   50   51   52   53   54   55   56   57   58   59