Page 52 - 卫星导航2021年第1-2合期
P. 52

Du et al. Satell Navig             (2021) 2:3                                         Page 19 of 22





            Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The international GNSS service in a   Geng, J., Teferle, F. N., Meng, X., & Dodson, A. (2011). Towards PPP‑RTK: Ambigu‑
                changing landscape of Global Navigation Satellite Systems. Journal of   ity resolution in real‑time precise point positioning. Advances in Space
                Geodesy, 83, 191–198.                             Research, 47, 1664–1673.
            El‑Mowafy, A. (2018). Real‑time precise point positioning using orbit and clock   Georgiadou, Y., & Kleusberg, A. (1988). On carrier signal multipath efects in
                corrections as quasi‑observations for improved detection of faults.   relative GPS positioning. Manuscripta Geodaetica, 13, 172–179.
                Journal of Navigation, 71(4), 769–787.        Green, D., Gafney, J., Bennett, P., Feng, Y., Higgins, M., & Millner, J. (2013). Vehi‑
            El‑Mowafy, A. (2019). On detection of observation faults in the observation   cle positioning for C‑ITS in Australia (background document), Austroads
                and position domains for positioning of intelligent transport systems.   Research Report, AP‑R431‑13. Retrieved January 23, 2019, from https ://
                Journal of Geodesy, 93(10), 2109–2122.            www.onlin epubl icati ons.austr oads.com.au/items /AP‑R431‑13.
            El‑Mowafy, A., & Deo, M. (2015). Cycle slip and clock jump repair with multi‑fre‑  Grifths, J., & Ray, J. R. (2013). Sub‑daily alias and draconitic errors in the IGS
                quency multi‑constellation GNSS data for Precise Point Positioning. In   orbits. GPS Solutions, 17, 413–422.
                Proceedings of the international global navigation satellite systems society   Groves, P. D., Jiang, Z., Rudi, M., & Strode, P. (2013). A portfolio approach to
                IGNSS symposium 2015, Queensland, Australia, 14–16 July (pp. 1–15).  NLOS and multipath mitigation in dense urban areas. In Proceedings of
            El‑Mowafy, A., Deo, M., & Kubo, N. (2017). Maintaining real‑time precise point   the 26th international technical meeting of the satellite division of the Insti-
                positioning during outages of orbit and clock corrections. GPS Solu-  tute of Navigation (ION GNSS + 2013), Nashville, TN, 16–20 September
                tions, 21(3), 937–947.                            (pp. 3231–3247).
            El‑Mowafy, A., Deo, M., & Rizos, C. (2016). On biases in Precise Point Positioning   Gunning, K., Blanch, J., & Walter, T. (2019a). SBAS corrections for PPP integrity
                with multi‑constellation and multi‑frequency GNSS data. Measurement   with solution separation. In Proceedings of the 2019 international techni-
                Science & Technology, 27(3), 035102.              cal meeting of the Institute of Navigation, Reston, Virginia, 28–31 January
            Euler, H. J., & Schafrin, B. (1991). On a measure for the discernibility between   (pp. 707–719).
                diferent ambiguity solutions in the static‑kinematic GPS‑mode. In IAG   Gunning, K., Blanch, J., Walter, T., de Groot, L., & Norman, L. (2018). Design and
                symposia no 107, kinematic systems in geodesy, surveying, and remote   evaluation of integrity algorithms for PPP in kinematic applications.
                sensing (pp. 285–295). Berlin: Springer.          In Proceedings of the 31st international technical meeting of the satellite
            European GNSS Agency. (2015). Report on the performance and level of   division of the Institute of Navigation (ION GNSS + 2018), Miami, Florida,
                integrity for safety and liability critical multi‑applications. Retrieved   24–28 September (pp. 1910–1939).
                July 4, 202, from https ://www.gsa.europ a.eu/sites /defau lt/fles /calls   Gunning, K., Blanch, J., Walter, T., de Groot, L., & Norman, L. (2019b). Integrity
                _for_propo sals/Annex %202.pdf.                   for tightly coupled PPP and IMU. In Proceedings of the 32nd international
            European GNSS Agency. (2018). Report on road user needs and requirements.   technical meeting of the satellite division of the Institute of Navigation (ION
                Retrieved December, 20, 2018, from https ://www.gsc‑europ a.eu/sites   GNSS + 2019), Miami, Florida, 16–20 September (pp. 3066–3078).
                /defau lt/fles /sites /all/fles /Repor t_on_User_Needs _and_Requi remen   Guo, F., Li, X., Zhang, X., & Wang, J. (2016). Assessment of precise orbit and
                ts_Road.pdf.                                      clock products for Galileo, BeiDou, and QZSS from IGS multi‑GNSS
            EU‑U.S. Cooperation on Satellite Navigation. (2016). Milestone 3 report of   experiment (MGEX). GPS Solutions, 21, 279–290.
                Working Group C—ARAIM Technical Subgroup, fnal version. Retrieved   Guo, K., Zhao, Y., Liu, Y., Wang, J., Zhang, C., & Zhu, Y. (2017). Study of
                December, 22, 2019, from http://www.gps.gov/polic y/coope ratio n/  ionospheric scintillation characteristics in australia with GNSS during
                europ e/2016/worki ng‑group ‑c/.                  2011–2015. Advances in Space Research, 59, 2909–2922.
            Fan, L., Tu, R., Zhang, R., Zheng, Z., Liu, J., Hong, J., et al. (2019). Real‑time BDS   Hadas, T., & Bosy, J. (2015). IGS RTS precise orbits and clocks verifcation and
                signal‑in‑space anomaly detection method considering receiver   quality degradation over time. GPS Solutions, 19(1), 93–105.
                anomalies. IET Radar, Sonar and Navigation, 13(12), 2220–2229.  Hadas, T., Kaplon, J., Bosy, J., Sierny, J., & Wilgan, K. (2013). Near‑real‑time
            Federal Aviation Administration. (2010). Phase II of the GNSS Evolutionary   regional troposphere models for the GNSS precise point positioning
                Architecture Study. Federal Aviation Administration (FAA), Washington,   technique. Measurement ScienceTechnology, 24(5), 055003.
                DC, February 2010. Retrieved February, 16, 2019, from https ://www.faa.  Han, S. (1997). Quality‑control issues relating to instantaneous ambiguity
                gov/about /ofc e_org/headq uarte rs_ofc es/ato/servi ce_units /techo   resolution for realtime GPS kinematic positioning. Journal of Geodesy,
                ps/navse rvice s/gnss/libra ry/docum ents/media /geasp hasei i_fnal .pdf.  71(6), 351–361.
            Feng, S., Ochieng, W., Moore, T., Hill, C., & Hide, C. (2009). Carrier phase‑based   Hatanaka, Y., Sawada, M., Horita, A., & Kusaka, M. (2001). Calibration of
                integrity monitoring for high‑accuracy positioning. GPS Solutions, 13,   antenna‑radome and monument‑multipath efect of GEONET‑Part 1:
                13–22.                                            Measurement of phase characteristics. Earth, Planets and Space, 53,
            Fernandez‑Hernandez, I., Vecchione, G., Díaz‑Pulido, F., Jeannot, M., Valentaite,   13–21.
                G., Blasi, R., et al. (2018). Galileo high accuracy: A program and policy   Henkel, P., Iafrancesco, M., & Sperl, A. (2016). Precise Point Positioning with
                perspective. In Proceedings of the 69th international astronautical con-  multipath estimation. In Proceedings of the 2016 IEEE/ION position,
                gress, Bremen, Germany, 1–5 October (pp. 1–9).    location and navigation symposium (PLANS), Savannah, Georgia, 11–14
            Firmin, P. E. (2006). Satellite navigation technology applications for intelligent   April (pp. 144–149).
                transport systems: A European perspective.    Heßelbarth, A., & Wanninger, L. (2013). SBAS orbit and satellite clock correc‑
            Frei, E., & Beutler, G. (1990). Rapid static positioning based on the fast ambigu‑  tions for precise point positioning. GPS Solutions, 17(4), 465–473.
                ity resolution approach FARA: Theory and frst results. Manuscripta   Hexagon Positioning Intelligence. (2019). Quantifying integrity. Velocity,
                Geodaetica, 15(4), 325–356.                       2019, 16–22. Retrieved July 4, 2020, from https ://en.calam eo.com/
            Fu, W., Huang, G., Zhang, Q., Gu, S., Ge, M., & Schuh, H. (2019). Multi‑GNSS real‑  read/00191 5796d 0c25e 242b9 f?authi d=CARc2 zXXAg 5Q&page=16.
                time clock estimation using sequential least square adjustment with   Hirokawa, R., Sato, Y., Fujita, S., & Miya, M. (2016). Compact SSR messages
                online quality control. Journal of Geodesy, 93(7), 963–976.  with integrity information for satellite based PPP‑RTK service. In
            Gao, Z., Zhang, H., Ge, M., Niu, X., Shen, W., Wickert, J., et al. (2017). Tightly cou‑  Proceedings of the 29th international technical meeting of the ion satel-
                pled integration of multi‑GNSS PPP and MEMS inertial measurement   lite division of the Institute of Navigation (ION GNSS + 2016), Portland,
                unit data. GPS Solutions, 21(2), 377–391.         Oregon, 12–16 September (pp. 3372–3376).
            Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS   Hofmann‑Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global position-
                carrier‑phase ambiguities in precise point positioning (PPP) with daily   ing system: Theory and practice. Berlin: Springer.
                observations. Journal of Geodesy, 82, 389–399.  Huang, G., Qin, Z., Zhang, Q., Wang, L., Yan, X., & Wang, X. (2018). An
            Ge, Y., Wang, Z., & Zhu, Y. (2017). Reduced ARAIM monitoring subset method   optimized method to detect BDS satellites’ orbit maneuvering and
                based on satellites in diferent orbital planes. GPS Solutions, 21(4),   anomalies in real‑time. Sensors, 18(3), 726.
                1443–1456. https ://doi.org/10.1007/s1029 1‑017‑0658‑x.  ICAO. (2006). International standards and recommended practices, Annex
            Geng, J., Shi, C., Ge, M., Dodson, A. H., Lou, Y., Zhao, Q., et al. (2012). Improving   10 to the convention on international civil aviation, aeronautical
                the estimation of fractional‑cycle biases for ambiguity resolution in   telecommunications, volume I—radio navigation aids, 6th Edition.
                precise point positioning. Journal of Geodesy, 86, 579–589.  Montréal: International Civil Aviation Organization.
   47   48   49   50   51   52   53   54   55   56   57