Page 52 - 卫星导航2021年第1-2合期
P. 52
Du et al. Satell Navig (2021) 2:3 Page 19 of 22
Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The international GNSS service in a Geng, J., Teferle, F. N., Meng, X., & Dodson, A. (2011). Towards PPP‑RTK: Ambigu‑
changing landscape of Global Navigation Satellite Systems. Journal of ity resolution in real‑time precise point positioning. Advances in Space
Geodesy, 83, 191–198. Research, 47, 1664–1673.
El‑Mowafy, A. (2018). Real‑time precise point positioning using orbit and clock Georgiadou, Y., & Kleusberg, A. (1988). On carrier signal multipath efects in
corrections as quasi‑observations for improved detection of faults. relative GPS positioning. Manuscripta Geodaetica, 13, 172–179.
Journal of Navigation, 71(4), 769–787. Green, D., Gafney, J., Bennett, P., Feng, Y., Higgins, M., & Millner, J. (2013). Vehi‑
El‑Mowafy, A. (2019). On detection of observation faults in the observation cle positioning for C‑ITS in Australia (background document), Austroads
and position domains for positioning of intelligent transport systems. Research Report, AP‑R431‑13. Retrieved January 23, 2019, from https ://
Journal of Geodesy, 93(10), 2109–2122. www.onlin epubl icati ons.austr oads.com.au/items /AP‑R431‑13.
El‑Mowafy, A., & Deo, M. (2015). Cycle slip and clock jump repair with multi‑fre‑ Grifths, J., & Ray, J. R. (2013). Sub‑daily alias and draconitic errors in the IGS
quency multi‑constellation GNSS data for Precise Point Positioning. In orbits. GPS Solutions, 17, 413–422.
Proceedings of the international global navigation satellite systems society Groves, P. D., Jiang, Z., Rudi, M., & Strode, P. (2013). A portfolio approach to
IGNSS symposium 2015, Queensland, Australia, 14–16 July (pp. 1–15). NLOS and multipath mitigation in dense urban areas. In Proceedings of
El‑Mowafy, A., Deo, M., & Kubo, N. (2017). Maintaining real‑time precise point the 26th international technical meeting of the satellite division of the Insti-
positioning during outages of orbit and clock corrections. GPS Solu- tute of Navigation (ION GNSS + 2013), Nashville, TN, 16–20 September
tions, 21(3), 937–947. (pp. 3231–3247).
El‑Mowafy, A., Deo, M., & Rizos, C. (2016). On biases in Precise Point Positioning Gunning, K., Blanch, J., & Walter, T. (2019a). SBAS corrections for PPP integrity
with multi‑constellation and multi‑frequency GNSS data. Measurement with solution separation. In Proceedings of the 2019 international techni-
Science & Technology, 27(3), 035102. cal meeting of the Institute of Navigation, Reston, Virginia, 28–31 January
Euler, H. J., & Schafrin, B. (1991). On a measure for the discernibility between (pp. 707–719).
diferent ambiguity solutions in the static‑kinematic GPS‑mode. In IAG Gunning, K., Blanch, J., Walter, T., de Groot, L., & Norman, L. (2018). Design and
symposia no 107, kinematic systems in geodesy, surveying, and remote evaluation of integrity algorithms for PPP in kinematic applications.
sensing (pp. 285–295). Berlin: Springer. In Proceedings of the 31st international technical meeting of the satellite
European GNSS Agency. (2015). Report on the performance and level of division of the Institute of Navigation (ION GNSS + 2018), Miami, Florida,
integrity for safety and liability critical multi‑applications. Retrieved 24–28 September (pp. 1910–1939).
July 4, 202, from https ://www.gsa.europ a.eu/sites /defau lt/fles /calls Gunning, K., Blanch, J., Walter, T., de Groot, L., & Norman, L. (2019b). Integrity
_for_propo sals/Annex %202.pdf. for tightly coupled PPP and IMU. In Proceedings of the 32nd international
European GNSS Agency. (2018). Report on road user needs and requirements. technical meeting of the satellite division of the Institute of Navigation (ION
Retrieved December, 20, 2018, from https ://www.gsc‑europ a.eu/sites GNSS + 2019), Miami, Florida, 16–20 September (pp. 3066–3078).
/defau lt/fles /sites /all/fles /Repor t_on_User_Needs _and_Requi remen Guo, F., Li, X., Zhang, X., & Wang, J. (2016). Assessment of precise orbit and
ts_Road.pdf. clock products for Galileo, BeiDou, and QZSS from IGS multi‑GNSS
EU‑U.S. Cooperation on Satellite Navigation. (2016). Milestone 3 report of experiment (MGEX). GPS Solutions, 21, 279–290.
Working Group C—ARAIM Technical Subgroup, fnal version. Retrieved Guo, K., Zhao, Y., Liu, Y., Wang, J., Zhang, C., & Zhu, Y. (2017). Study of
December, 22, 2019, from http://www.gps.gov/polic y/coope ratio n/ ionospheric scintillation characteristics in australia with GNSS during
europ e/2016/worki ng‑group ‑c/. 2011–2015. Advances in Space Research, 59, 2909–2922.
Fan, L., Tu, R., Zhang, R., Zheng, Z., Liu, J., Hong, J., et al. (2019). Real‑time BDS Hadas, T., & Bosy, J. (2015). IGS RTS precise orbits and clocks verifcation and
signal‑in‑space anomaly detection method considering receiver quality degradation over time. GPS Solutions, 19(1), 93–105.
anomalies. IET Radar, Sonar and Navigation, 13(12), 2220–2229. Hadas, T., Kaplon, J., Bosy, J., Sierny, J., & Wilgan, K. (2013). Near‑real‑time
Federal Aviation Administration. (2010). Phase II of the GNSS Evolutionary regional troposphere models for the GNSS precise point positioning
Architecture Study. Federal Aviation Administration (FAA), Washington, technique. Measurement ScienceTechnology, 24(5), 055003.
DC, February 2010. Retrieved February, 16, 2019, from https ://www.faa. Han, S. (1997). Quality‑control issues relating to instantaneous ambiguity
gov/about /ofc e_org/headq uarte rs_ofc es/ato/servi ce_units /techo resolution for realtime GPS kinematic positioning. Journal of Geodesy,
ps/navse rvice s/gnss/libra ry/docum ents/media /geasp hasei i_fnal .pdf. 71(6), 351–361.
Feng, S., Ochieng, W., Moore, T., Hill, C., & Hide, C. (2009). Carrier phase‑based Hatanaka, Y., Sawada, M., Horita, A., & Kusaka, M. (2001). Calibration of
integrity monitoring for high‑accuracy positioning. GPS Solutions, 13, antenna‑radome and monument‑multipath efect of GEONET‑Part 1:
13–22. Measurement of phase characteristics. Earth, Planets and Space, 53,
Fernandez‑Hernandez, I., Vecchione, G., Díaz‑Pulido, F., Jeannot, M., Valentaite, 13–21.
G., Blasi, R., et al. (2018). Galileo high accuracy: A program and policy Henkel, P., Iafrancesco, M., & Sperl, A. (2016). Precise Point Positioning with
perspective. In Proceedings of the 69th international astronautical con- multipath estimation. In Proceedings of the 2016 IEEE/ION position,
gress, Bremen, Germany, 1–5 October (pp. 1–9). location and navigation symposium (PLANS), Savannah, Georgia, 11–14
Firmin, P. E. (2006). Satellite navigation technology applications for intelligent April (pp. 144–149).
transport systems: A European perspective. Heßelbarth, A., & Wanninger, L. (2013). SBAS orbit and satellite clock correc‑
Frei, E., & Beutler, G. (1990). Rapid static positioning based on the fast ambigu‑ tions for precise point positioning. GPS Solutions, 17(4), 465–473.
ity resolution approach FARA: Theory and frst results. Manuscripta Hexagon Positioning Intelligence. (2019). Quantifying integrity. Velocity,
Geodaetica, 15(4), 325–356. 2019, 16–22. Retrieved July 4, 2020, from https ://en.calam eo.com/
Fu, W., Huang, G., Zhang, Q., Gu, S., Ge, M., & Schuh, H. (2019). Multi‑GNSS real‑ read/00191 5796d 0c25e 242b9 f?authi d=CARc2 zXXAg 5Q&page=16.
time clock estimation using sequential least square adjustment with Hirokawa, R., Sato, Y., Fujita, S., & Miya, M. (2016). Compact SSR messages
online quality control. Journal of Geodesy, 93(7), 963–976. with integrity information for satellite based PPP‑RTK service. In
Gao, Z., Zhang, H., Ge, M., Niu, X., Shen, W., Wickert, J., et al. (2017). Tightly cou‑ Proceedings of the 29th international technical meeting of the ion satel-
pled integration of multi‑GNSS PPP and MEMS inertial measurement lite division of the Institute of Navigation (ION GNSS + 2016), Portland,
unit data. GPS Solutions, 21(2), 377–391. Oregon, 12–16 September (pp. 3372–3376).
Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS Hofmann‑Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global position-
carrier‑phase ambiguities in precise point positioning (PPP) with daily ing system: Theory and practice. Berlin: Springer.
observations. Journal of Geodesy, 82, 389–399. Huang, G., Qin, Z., Zhang, Q., Wang, L., Yan, X., & Wang, X. (2018). An
Ge, Y., Wang, Z., & Zhu, Y. (2017). Reduced ARAIM monitoring subset method optimized method to detect BDS satellites’ orbit maneuvering and
based on satellites in diferent orbital planes. GPS Solutions, 21(4), anomalies in real‑time. Sensors, 18(3), 726.
1443–1456. https ://doi.org/10.1007/s1029 1‑017‑0658‑x. ICAO. (2006). International standards and recommended practices, Annex
Geng, J., Shi, C., Ge, M., Dodson, A. H., Lou, Y., Zhao, Q., et al. (2012). Improving 10 to the convention on international civil aviation, aeronautical
the estimation of fractional‑cycle biases for ambiguity resolution in telecommunications, volume I—radio navigation aids, 6th Edition.
precise point positioning. Journal of Geodesy, 86, 579–589. Montréal: International Civil Aviation Organization.