Page 53 - 卫星导航2021年第1-2合期
P. 53
Du et al. Satell Navig (2021) 2:3 Page 20 of 22
IGS. (2014). IGS real time service. Retrieved March 27, 2020, from https :// Kouba, J., Lahaye, F., & Tétreault, P. (2017). Precise point positioning. In P. J. G.
kb.igs.org/hc/en‑us/artic les/20108 7803‑IGS‑Real‑Time‑Servi ce‑Fact‑ Teunissen, & O. Montenbruck (Eds.), Springer handbook of global naviga-
Sheet . tion satellite systems (pp. 723–751). Springer, Berlin.
IGS. (2019). IGS RTS products. Retrieved May 6, 2019, from http://www.igs.org/ Kovach, K., Dobyne, J., Crews, M., & Miles, C. (2008). GPS III integrity concept. In
rts/produ cts. Proceedings of the 21st international technical meeting of the satellite divi-
Imparato, D., El‑Mowafy, A., & Rizos, C. (2018a). Integrity monitoring: From sion of the institute of navigation (ION GNSS 2008), Savannah, GA, 16–19
airborne to land applications. In R. B. Rustamov, & A. M. Hashimov September (pp. 2250–2257).
(Eds.), Multifunctional operation and application of GPS (pp. 23–43). Langley, R. B. (1999). The integrity of GPS. GPS World, 10, 60–63.
IntechOpen. Laurichesse, D., & Mercier, F. (2007). Integer ambiguity resolution on undif‑
Imparato, D., El‑Mowafy, A., Rizos, C., & Wang, J. (2018b). Vulnerabilities in SBAS ferenced GPS phase measurements and its application to PPP. In Pro-
and RTK positioning in intelligent transport systems: An overview. In ceedings of ION GNSS 20th international technical meeting of the satellite
Proceedings of the international global navigation satellite systems asso- division, Fort Worth, TX, 25–28 September (pp. 839–848).
ciation IGNSS symposium 2018, Sydney, Australia, 7–9 February (pp. 1–12). Laurichesse, D,. & Privat, A. (2015). An open‑source PPP client implementa‑
Ioannides, R. T., Pany, T., & Gibbons, G. (2016). Known vulnerabilities of Global tion for the CNES PPP‑WIZARD demonstrator. In Proceedings of the 28th
Navigation Satellite Systems, status, and potential mitigation tech‑ international technical meeting of the satellite division of the institute of
niques. Proceedings of the IEEE, 104(6), 1174–1194. navigation (ION GNSS + 2015), Tampa, Florida, 14–18 September (pp.
ISO. (2018). Road vehicles—functional safety, ISO 26262:2018. Retrieved Sep‑ 2780–2789).
tember, 20, 2020, from https ://www.iso.org/stand ard/68391 .html. Leandro, R., Landau, H., Nitschke, M., Glocker, M., Seeger, S., Chen, X., et al.
ISO. (2019). Road vehicles—safety of the intended function, ISO/PAS (2011). RTX positioning: The next generation of cm‑accurate real‑time
21448:2019. Retrieved September, 20, 2020, fromhttps ://www.iso.org/ GNSS positioning. In Proceedings of the 24th international technical meet-
stand ard/70939 .html. ing of the satellite division of the Institute of Navigation (ION GNSS 2011),
Jacobsen, K. S., & Dähnn, M. (2014). Statistics of ionospheric disturbances and Portland, Oregon, 20–23 September (pp. 1460–1475).
their correlation with GNSS positioning errors at high latitudes. Journal Li, W., Cheng, P., Bei, J., Wen, H., & Wang, H. (2012). Calibration of regional iono‑
of Space Weather and Space Climate, 4, A27. https ://doi.org/10.1051/ spheric delay with uncombined precise point positioning and accuracy
swsc/20140 24. assessment. Journal of Earth System Science, 121, 989–999.
Jokinen, A., Ellum, C., Webster, I., Shanmugam, S., & Sheridan, K. (2018). NovAtel Li, T., Wang, J., & Laurichesse, D. (2013). Modeling and quality control for reli‑
CORRECT with Precise Point Positioning (PPP): recent developments. In able Precise Point Positioning integer ambiguity resolution with GNSS
Proceedings of the 31st international technical meeting of the satellite divi- modernization. GPS Solutions, 18, 429–442.
sion of the institute of navigation (ION GNSS + 2018), Miami, Florida, 24–28 Li, X., Zhang, X., & Ge, M. (2011). Regional reference network augmented pre‑
September (pp. 1866–1882). cise point positioning for instantaneous ambiguity resolution. Journal
Jokinen, A., Feng, S., Milner, C., Schuster, W., Ochieng, W., Hide, C., et al. (2011). of Geodesy, 85(3), 151–158.
Precise Point Positioning and integrity monitoring with GPS and GLO‑ Liu, X. (2018). Recent Fugro developments on real‑time high‑accuracy PPP
NASS. In The European navigation conference, London, UK, 29 Novem‑ service. Presented at the 9th CSNC, Harbin, 23–25 May.
ber–1 December. Liu, Y., Fu, L., Wang, J., & Zhang, C. (2017). Study of GNSS loss of lock character‑
Jokinen, A., Feng, S., Schuster, W., Ochieng, W., Hide, C., Moore, T., et al. (2013). istics under ionosphere scintillation with GNSS data at Weipa (Australia)
Integrity monitoring of fxed ambiguity Precise Point Positioning (PPP) during solar maximum phase. Sensors (Basel), 17, 2205.
solutions. Geospatial Information Science, 16, 141–148. Lovas, T., Wieczynski, A., Baczynska, M., Perski, A., Kertesz, I., Berenyi, A., et al.
Julien, O. (2005). Design of Galileo L1F receiver tracking loops. PhD thesis, (2011). Positioning for next generation intelligent transport systems
Department of Geomatics Engineering, University of Calgary, Calgary, services in SafeTRIP. In Proceedings of ASPRS 2011 annual conference,
Alberta. Milwaukee, Wisconsin, 1–5 May.
Kafka, P. (2012). The automotive standard ISO 26262, the innovative driver for Martins, B. M. R. (2014). GNSS vulnerabilities & robustness. https ://repos itori
enhanced safety assessment & technology for motor cars. Procedia o‑abert o.up.pt. Accessed 20 Nov 2019.
Engineering, 45, 2–10. Milner, C. D., & Ochieng, W. Y. (2008). Failure modes and efects analysis (FMEA)
Kazmierski, K., Sośnica, K., & Hadas, T. (2018). Quality assessment of multi‑GNSS of GNSS aviation applications. Department of Civil and Environmental
orbits and clocks for real‑time precise point positioning. GPS Solutions, Engineering, Imperial College London, London. Retrieved July, 2, 2020,
22(1), 11. from https ://www.loran .org/proce eding s/Meeti ng200 8/Paper s/Milne
Kealy, A. (2011). Beyond accuracy—the integrity era. Retrieved August 8, 2019, r_2A3r.pdf.
from https ://www.thale sgrou p.com/sites /defau lt/fles /datab ase/d7/ Montenbruck, O. (2003). Kinematic GPS positioning of LEO satellites using
asset /docum ent/day_2_‑_12.25_thale s_integ rity_umelb .pdf. ionosphere‑free single frequency measurements. Aerospace Science
Khodabandeh, A., Wang, J., Rizos, C., & El‑Mowafy, A. (2019). On the detect‑ Technology, 7(5), 396–405.
ability of mis‑modeled biases in the network‑derived positioning cor‑ Montenbruck, O., Schmid, R., Mercier, F., Steigenberger, P., Noll, C., Fatkulin, R.,
rections and their user impact. GPS Solutions. https ://doi.org/10.1007/ et al. (2015). GNSS satellite geometry and attitude models. Advances in
s1029 1‑019‑0863‑x. Space Research, 56(6), 1015–1029.
Kim, D., & Langley, R. B. (2001). Instantaneous real‑time cycle‑slip correction of Murrian, M. J., Gonzalez, C. W., Humphreys, T. E., Pesyna, K. M. J., Shepard, D., &
dual frequency GPS data. In Proceedings of the international symposium Kerns, A. J. (2016). Low‑cost precise positioning for automated vehicles.
on kinematic systems in geodesy, geomatics, and navigation, Banf, Alberta, GPS World, 27, 32–39.
5–8 June (pp. 255–264). Navarro, P. F., Lainez, M. D., & Romay, M. M. (2015). New approach for integrity
Kintner, P., Humphreys, T., & Hinks, J. (2009). GNSS and ionospheric scintillation. bounds computation applied to advanced precise positioning applica‑
Inside GNSS, 4, 22–30. tions. In Proceedings of the 28th international technical meeting of the
Kjørsvik, N., Gjevestad, J., & Øvstedal, O. (2006). Handling of the tropospheric satellite division of the Institute of Navigation (ION GNSS + 2015), Tampa,
delay in kinematic precise point positioning. In: Proceedings of the 19th Florida, 14–18 September (pp. 2821–2834).
international technical meetingof the satellite division of the Institute of Navarro, P. F., Martínez, L., Alonso, M., Laínez, M. D., & Romay, M. M. (2016). PPP
Navigation (ION GNSS 2006), Fort Worth, TX, 26–29, September (pp. integrity for advanced applications, including feld trials with Galileo,
2279–2281). geodetic and low‑cost receivers and a preliminary safety analysis. In
Koopman, P., Ferrell, U., Fratrik, F., & Wagner, M. (2019). A safety standard Proceedings of the 29th international technical meeting of the ION satellite
approach for fully autonomous vehicles. In Second international division (ION GNSS + 2016), Portland, Oregon, 12–16 September (pp.
workshop on artifcial intelligence safety engineering (WAISE 2019), Turku, 3332–3354).
Finland, 10 September (pp. 326–332). Navipedia. (2011a). Integrity. Retrieved July, 22, 2019, from https ://gssc.esa.int/
Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and navip edia/index .php/Integ rity.
clock products. GPS Solutions, 5(2), 12–28. Navipedia. (2011b). RAIM fundamentals. Retrieved July, 7, 2019, from https ://
gssc.esa.int/navip edia/index .php/RAIM_Funda menta ls.