Page 473 - 《软件学报》2025年第4期
P. 473
郗来乐 等: 智能网联汽车自动驾驶安全: 威胁、攻击与防护 1879
arXiv:1312.6199, 2014.
[89] Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: An overview. IEEE
Signal Processing Magazine, 2018, 35(1): 53–65. [doi: 10.1109/MSP.2017.2765202]
[90] Dumford J, Scheirer W. Backdooring convolutional neural networks via targeted weight perturbations. In: Proc. of the 2020 IEEE Int’l
Joint Conf. on Biometrics (IJCB). Houston: IEEE, 2020. 1–9. [doi: 10.1109/IJCB48548.2020.9304875]
[91] Rudd EM, Rozsa A, Günther M, Boult TE. A survey of stealth malware attacks, mitigation measures, and steps toward autonomous open
world solutions. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1145–1172. [doi: 10.1109/COMST.2016.2636078]
[92] Costales R, Mao CZ, Norwitz R, Kim B, Yang JF. Live Trojan attacks on deep neural networks. In: Proc. of the 2020 IEEE/CVF Conf.
on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020. 3460–3469. [doi: 10.1109/CVPRW50498.2020.00406]
[93] Zhang QX, Ma WC, Wang YJ, Zhang YY, Shi ZW, Li YZ. Backdoor attacks on image classification models in deep neural networks.
Chinese Journal of Electronics, 2022, 31(2): 199–212. [doi: 10.1049/cje.2021.00.126]
[94] Tang RX, Du MN, Liu NH, Yang F, Hu X. An embarrassingly simple approach for Trojan attack in deep neural networks. In: Proc. of
the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. ACM, 2020. 218–228. [doi: 10.1145/3394486.3403064]
[95] Li YC, Hua JY, Wang HY, Chen CY, Liu YX. DeepPayload: Black-box backdoor attack on deep learning models through neural
payload injection. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Madrid: IEEE, 2021. 263–274. [doi: 10.
University of Information Engineering, 2018 (in Chinese).
1109/ICSE43902.2021.00035]
[96] Tramèr F, Zhang F, Juels A, Reiter MK, Ristenpart T. Stealing machine learning models via prediction APIs. In: Proc. of the 25th
USENIX Conf. on Security Symp. Austin: USENIX Association, 2016. 601–618.
[97] Truong JB, Maini P, Walls RJ, Papernot N. Data-free model extraction. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and
Pattern Recognition. Nashville: IEEE, 2021. 4769–4778. [doi: 10.1109/CVPR46437.2021.00474]
[98] Shokri R, Stronati M, Song CZ, Shmatikov V. Membership inference attacks against machine learning models. In: Proc. of the 2017
IEEE Symp. on Security and Privacy (SP). San Jose: IEEE, 2017. 3–18. [doi: 10.1109/SP.2017.41]
[99] Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures. In: Proc. of
the 22nd ACM SIGSAC Conf. on Computer and Communications Security. Denver: ACM, 2015. 1322–1333. [doi: 10.1145/2810103.
2813677]
[100] Zhu LG, Liu ZJ, Han S. Deep leakage from gradients. In: Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems.
Vancouver: Curran Associates Inc., 2019. 14774–14784.
[101] Lin SC, Zhang YQ, Hsu CH, Skach M, Haque ME, Tang LJ, Mars J. The architectural implications of autonomous driving: Constraints
and acceleration. In: Proc. of the 23rd Int’l Conf. on Architectural Support for Programming Languages and Operating Systems.
Williamsburg: ACM, 2018. 751–766. [doi: 10.1145/3173162.3173191]
[102] Cheng ZY, Wu BY, Zhang ZY, Zhao JJ. TAT: Targeted backdoor attacks against visual object tracking. Pattern Recognition, 2023, 142:
109629. [doi: 10.1016/j.patcog.2023.109629]
[103] Zhang KY, Song X, Zhang CH, Yu S. Challenges and future directions of secure federated learning: A survey. Frontiers of Computer
Science, 2022, 16(5): 165817. [doi: 10.1007/s11704-021-0598-z]
[104] McMahan B, Moore E, Ramage D, Hampson S, Aguera y Arcas B. Communication-efficient learning of deep networks from
decentralized data. In: Proc. of the 20th Int’l Conf. on Artificial Intelligence and Statistics. Fort Lauderdale: PMLR, 2017. 1273–1282.
[105] Peri N, Gupta N, Huang WR, Fowl L, Zhu C, Feizi S, Goldstein T, Dickerson JP. Deep K-NN defense against clean-label data poisoning
attacks. In: Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 55–70. [doi: 10.1007/978-3-030-66415-
2_4]
[106] Rosenfeld E, Winston E, Ravikumar P, Kolter JZ. Certified robustness to label-flipping attacks via randomized smoothing. In: Proc. of
the 37th Int’l Conf. on Machine Learning. Virtual Event: JMLR.org, 2020. 8230–8241.
[107] Xiao P, Li YY, Li XH. Design and implementation of firewall based on MOST. Science and Technology & Innovation, 2009, 25(21):
57–58, 61 (in Chinese with English abstract). [doi: 10.3969/j.issn.1008-0570.2009.21.024]
[108] Wu YH. Research on vehicle CAN network intrusion detection system based on neural networks [MS. Thesis]. Chengdu: Chengdu
[109] Wei K, Li J, Ding M, Ma C, Yang HH, Farokhi F, Jin S, Quek TQS, Vincent Poor H. Federated learning with differential privacy:
Algorithms and performance analysis. IEEE Trans. on Information Forensics and Security, 2020, 15: 3454–3469. [doi: 10.1109/TIFS.
2020.2988575]
[110] Wang JX, Guo S, Xie X, Qi H. Protect privacy from gradient leakage attack in federated learning. In: Proc. of the 2022 IEEE Conf. on
Computer Communications. London: IEEE, 2022. 580–589. [doi: 10.1109/INFOCOM48880.2022.9796841]