Page 472 - 《软件学报》2025年第4期
P. 472

1878                                                       软件学报  2025  年第  36  卷第  4  期


                      Cyber-physical Systems (SEsCPS). Montreal: IEEE, 2019. 39–45. [doi: 10.1109/SEsCPS.2019.00014]
                 [67]  Sargolzaei A, Crane CD, Abbaspour A, Noei S. A machine learning approach for fault detection in vehicular cyber-physical systems. In:
                      Proc. of the 15th IEEE Int’l Conf. on Machine Learning and Applications (ICMLA). Anaheim: IEEE, 2016. 636–640. [doi: 10.1109/
                      ICMLA.2016.0112]
                 [68]  Othmane LB, Weffers H, Mohamad MM, Wolf M. A survey of security and privacy in connected vehicles. In: Benhaddou D, Al-Fuqaha
                      A, eds. Wireless Sensor and Mobile Ad-hoc Networks: Vehicular and Space Applications. New York: Springer, 2015. 217–247. [doi: 10.
                      1007/978-1-4939-2468-4_10]
                 [69]  Ali I, Lawrence T, Li FG. An efficient identity-based signature scheme without bilinear pairing for vehicle-to-vehicle communication in
                      VANETs. Journal of Systems Architecture, 2020, 103: 101692. [doi: 10.1016/j.sysarc.2019.101692]
                 [70]  Ali  Alheeti  KM,  Gruebler  A,  McDonald-Maier  K.  Intelligent  intrusion  detection  of  grey  hole  and  rushing  attacks  in  self-driving
                      vehicular networks. Computers, 2016, 5(3): 16. [doi: 10.3390/computers5030016]
                 [71]  Lu XZ, Xiao L, Xu TW, Zhao YF, Tang YL, Zhuang WH. Reinforcement learning based PHY authentication for VANETs. IEEE Trans.
                      on Vehicular Technology, 2020, 69(3): 3068–3079. [doi: 10.1109/TVT.2020.2967026]
                 [72]  Gomides TS, Kranakis E, Lambadaris I, Viniotis Y. Optimal control for platooning in vehicular networks. In: Proc. of the 2023 IEEE Int’l
                      Conf. on Communications. Rome: IEEE, 2023. 6597–6602. [doi: 10.1109/ICC45041.2023.10279610]
                 [73]  Xu H, Ji JQ, Zhu K, Wang R. Deep reinforcement learning for resource allocation in multi-platoon vehicular networks. In: Proc. of the
                      16th Int’l Conf. on Wireless Algorithms, Systems, and Applications. Nanjing: Springer, 2021. 402–416. [doi: 10.1007/978-3-030-86130-
                      8_32]
                 [74]  Chang S, Qi Y, Zhu HZ, Zhao JZ, Shen XM. Footprint: Detecting Sybil attacks in urban vehicular networks. IEEE Trans. on Parallel
                      and Distributed Systems, 2012, 23(6): 1103–1114. [doi: 10.1109/TPDS.2011.263]
                 [75]  Lu RX, Lin XD, Liang XH, Shen XM. A dynamic privacy-preserving key management scheme for location-based services in VANETs.
                      IEEE Trans. on Intelligent Transportation Systems, 2012, 13(1): 127–139. [doi: 10.1109/TITS.2011.2164068]
                 [76]  Junaidi DR, Ma MD, Su R. Secure vehicular platoon management against Sybil attacks. Sensors, 2022, 22(22): 9000. [doi: 10.3390/
                      s22229000]
                 [77]  Gu PWL, Khatoun R, Begriche Y, Serhrouchni A. Support vector machine (SVM) based Sybil attack detection in vehicular networks.
                      In: Proc. of the 2017 IEEE Wireless Communications and Networking Conf. (WCNC). San Francisco: IEEE, 2017. 1–6. [doi: 10.1109/
                      WCNC.2017.7925783]
                 [78]  Gong  J,  Murguia  C,  Bayuwindra  A,  Cao  JD.  Resilient  controller  synthesis  against  DoS  attacks  for  vehicular  platooning  in  spatial
                      domain. arXiv:2307.15874, 2023.
                 [79]  Ravindran R, Santora MJ, Jamali MM. Multi-object detection and tracking, based on DNN, for autonomous vehicles: A review. IEEE
                      Sensors Journal, 2021, 21(5): 5668–5677. [doi: 10.1109/JSEN.2020.3041615]
                 [80]  Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM,
                      2017, 60(6): 84–90. [doi: 10.1145/3065386]
                 [81]  Bijjahalli S, Sabatini R, Gardi A. Advances in intelligent and autonomous navigation systems for small UAS. Progress in Aerospace
                      Sciences, 2020, 115: 100617. [doi: 10.1016/j.paerosci.2020.100617]
                 [82]  Waymo LLC. Waymo safety report: On the road to fully self-driving. 2017. https://storage.googleapis.com/sdc-prod/v1/safety-report/
                      waymo-safety-report-2017-10.pdf
                 [83]  Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang JK, Zhang X, Zhao J,
                      Zieba K. End to end learning for self-driving cars. arXiv:1604.07316, 2016.
                 [84]  Muñoz-González  L,  Biggio  B,  Demontis  A,  Paudice  A,  Wongrassamee  V,  Lupu  EC,  Roli  F.  Towards  poisoning  of  deep  learning
                      algorithms with back-gradient optimization. In: Proc. of the 10th ACM Workshop on Artificial Intelligence and Security. Dallas: ACM,
                      2017. 27–38. [doi: 10.1145/3128572.3140451]
                 [85]  Suciu O, Mărginean R, Kaya Y, Daumé H III, Dumitraş T. When does machine learning FAIL? Generalized transferability for evasion
                      and poisoning attacks. In: Proc. of the 27th USENIX Conf. on Security Symp. Baltimore: USENIX Association, 2018. 1299–1316.
                 [86]  Shafahi A, Huang WR, Najibi M, Suciu O, Studer C, Dumitras T, Goldstein T. Poison frogs! Targeted clean-label poisoning attacks on
                      neural networks. In: Proc. of the 32nd Int’l Conf. on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018.
                      6106–6116.
                 [87]  Zhu C, Huang WR, Li HD, Taylor G, Studer C, Goldstein T. Transferable clean-label poisoning attacks on deep neural nets. In: Proc. of
                      the 36th Int’l Conf. on Machine Learning. Long Beach: PMLR, 2019. 7614–7623.
                 [88]  Szegedy  C,  Zaremba  W,  Sutskever  I,  Bruna  J,  Erhan  D,  Goodfellow  I,  Fergus  R.  Intriguing  properties  of  neural  networks.
   467   468   469   470   471   472   473   474   475   476   477