Page 470 - 《软件学报》2025年第4期
P. 470

1876                                                       软件学报  2025  年第  36  卷第  4  期


                 [23]  Bilik I, Longman O, Villeval S, Tabrikian J. The rise of radar for autonomous vehicles: Signal processing solutions and future research
                      directions. IEEE Signal Processing Magazine, 2019, 36(5): 20–31. [doi: 10.1109/MSP.2019.2926573]
                 [24]  Xu WY, Yan C, Jia WB, Ji XY, Liu JH. Analyzing and enhancing the security of ultrasonic sensors for autonomous vehicles. IEEE
                      Internet of Things Journal, 2018, 5(6): 5015–5029. [doi: 10.1109/JIOT.2018.2867917]
                 [25]  Petit J, Stottelaar B, Feiri M, Kargl F. Remote attacks on automated vehicles sensors: Experiments on camera and LiDAR. 2015. https://
                      api.semanticscholar.org/CorpusID:39608826
                 [26]  Yan C, Xu WY, Liu JH. Can you trust autonomous vehicles: Contactless attacks against sensors of self-driving vehicles. 2016. https://
                      cyansec.com/files/articles/16DEFCON-Sensor.pdf
                 [27]  Son Y, Shin H, Kim D, Park Y, Noh J, Choi K, Choi J, Kim Y. Rocking drones with intentional sound noise on gyroscopic sensors. In:
                      Proc. of the 24th USENIX Security Symp. Washington: USENIX Association, 2015.
                 [28]  Trippel T, Weisse O, Xu WY, Honeyman P, Fu K. WALNUT: Waging doubt on the integrity of MEMS accelerometers with acoustic
                      injection attacks. In: Proc. of the 2017 IEEE European Symp. on Security and Privacy (EuroS&P). Paris: IEEE, 2017. 3–18. [doi: 10.
                      1109/EuroSP.2017.42]
                 [29]  Warner JS, Johnston RG. A simple demonstration that the global positioning system (GPS) is vulnerable to spoofing. The Journal of
                      Security Administration, 2002, 25: 19–28.

                 [30]  Volpe JA. Vulnerability assessment of the transportation infrastructure relying on the global positioning system. 2001. https://rosap.ntl.
                      bts.gov/view/dot/8435
                 [31]  Humphreys TE, Ledvina BM, Psiaki ML, O’Hanlon BW, Kintner PM Jr. Assessing the spoofing threat: Development of a portable GPS
                      civilian spoofer. In: Proc. of the 21st Int’l Technical Meeting of the Satellite Division of the Institute of Navigation. Savanna, 2008.
                 [32]  Nighswander T, Ledvina B, Diamond J, Brumley R, Brumley D. GPS software attacks. In: Proc. of the 2012 ACM Conf. on Computer
                      and Communications Security. Raleigh: ACM, 2012. 450–461. [doi: 10.1145/2382196.2382245]
                 [33]  Shin H, Kim D, Kwon Y, Kim Y. Illusion and dazzle: Adversarial optical channel exploits against lidars for automotive applications. In:
                      Proc. of the 19th Int’l Conf. on Cryptographic Hardware and Embedded Systems. Taipei: Springer, 2017. 445–467.
                 [34]  Mehmood  S,  Malik  AN,  Qureshi  IM,  Khan  MZU,  Zaman  F.  A  novel  deceptive  jamming  approach  for  hiding  actual  target  and
                      generating false targets. Wireless Communications and Mobile Computing, 2021, 2021: 8844630. [doi: 10.1155/2021/8844630]
                 [35]  Buller W, Wilson B, Garbarino J, Kelly J, Subotic N, Thelen B, Belzowski B. Radar congestion study. Technical Report, DOT HS 812
                      632, Washington: U.S. Department of Transportation, National Highway Traffic Safety Administration, 2018.
                 [36]  Alland S, Stark W, Ali M, Hegde M. Interference in automotive radar systems: Characteristics, mitigation techniques, and current and
                      future research. IEEE Signal Processing Magazine, 2019, 36(5): 45–59. [doi: 10.1109/MSP.2019.2908214]
                 [37]  Kim G, Mun J, Lee J. A peer-to-peer interference analysis for automotive chirp sequence radars. IEEE Trans. on Vehicular Technology,
                      2018, 67(9): 8110–8117. [doi: 10.1109/tvt.2018.2848898]
                 [38]  Zeng  KX,  Liu  SN,  Shu  YC,  Wang  D,  Li  HY,  Dou  YZ,  Wang  G,  Yang  YL.  All  your  GPS  are  belong  to  us:  Towards  stealthy
                      manipulation of road navigation systems. In: Proc. of the 27th USENIX Conf. on Security Symp. Baltimore: USENIX Association,
                      2018. 1527–1544.
                 [39]  Zhu Y, Miao CL, Hajiaghajani F, Huai MD, Su L, Qiao CM. Adversarial attacks against LiDAR semantic segmentation in autonomous
                      driving. In: Proc. of the 19th ACM Conf. on Embedded Networked Sensor Systems. Coimbra: Association for Computing Machinery,
                      2021. 329–342. [doi: 10.1145/3485730.3485935]
                 [40]  Cao YL, Bhupathiraju SH, Naghavi P, Sugawara T, Mao ZM, Rampazzi S. You can’t see me: Physical removal attacks on LiDAR-based
                      autonomous  vehicles  driving  frameworks.  In:  Proc.  of  the  32nd  USENIX  Security  Symp.  Anaheim:  USENIX  Association,  2023.
                      2993–3010.
                 [41]  Ma  C,  Wang  NF,  Chen  QA,  Shen  C.  SlowTrack:  Increasing  the  latency  of  camera-based  perception  in  autonomous  driving  using
                      adversarial examples. In: Proc. of the 38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI, 2024. 4062–4070. [doi: 10.1609/
                      aaai.v38i5.28200]
                 [42]  Zhu Y, Miao CL, Xue HF, Li ZX, Yu YN, Xu WY, Su L, Qiao CM. TileMask: A passive-reflection-based attack against mmWave radar
                      object  detection  in  autonomous  driving.  In:  Proc.  of  the  2023  ACM  SIGSAC  Conf.  on  Computer  and  Communications  Security.
                      Copenhagen: ACM, 2023. 1317–1331. [doi: 10.1145/3576915.3616661]
                 [43]  Cao YL, Wang NF, Xiao CW, Yang DW, Fang J, Yang RG, Chen QA, Liu MY, Li B. Invisible for both Camera and LiDAR: Security
                      of  multi-sensor  fusion  based  perception  in  autonomous  driving  under  physical-world  attacks.  In:  Proc.  of  the  2021  IEEE  Symp.  on
                      Security and Privacy (SP). San Francisco: IEEE, 2021. 176–194. [doi: 10.1109/SP40001.2021.00076]
                 [44]  Shen JJ, Won JY, Chen ZY, Chen QA. Drift with devil: Security of multi-sensor fusion based localization in high-level autonomous
   465   466   467   468   469   470   471   472   473   474   475