Page 471 - 《软件学报》2025年第4期
P. 471
郗来乐 等: 智能网联汽车自动驾驶安全: 威胁、攻击与防护 1877
driving under GPS spoofing (extended version). In: Proc. of the 29th USENIX Security Symp. USENIX Association, 2020. 931–948.
[45] Narain S, Ranganathan A, Noubir G. Security of GPS/INS based on-road location tracking systems. arXiv:1808.03515, 2018.
[46] Shao BJ, Wan TQ, Liao FY, Kim BJ, Chen JW, Guo JM, Ma SJ, Ahn JH, Chai Y. Highly trustworthy in-sensor cryptography for image
encryption and authentication. ACS Nano, 2023, 17(11): 10291–10299. [doi: 10.1021/acsnano.3c00487]
[47] Matsumura R, Sugawara T, Sakiyama K. A secure LiDAR with AES-based side-channel fingerprinting. In: Proc. of the 6th Int’l Symp.
on Computing and Networking Workshops (CANDARW). Takayama: IEEE, 2018. 479–482. [doi: 10.1109/CANDARW.2018.00092]
[48] Dang YC, Benzaïd C, Yang B, Taleb T. Deep learning for GPS spoofing detection in cellular-enabled UAV systems. In: Proc. of the
2021 Int’l Conf. on Networking and Network Applications. Lijiang: IEEE, 2022. 501–506. [doi: 10.1109/NaNA53684.2021.00093]
[49] Kapoor P, Vora A, Kang KD. Detecting and mitigating spoofing attack against an automotive radar. In: Proc. of the 88th IEEE
Vehicular Technology Conf. (VTC-Fall). Chicago: IEEE, 2018. 1–6. [doi: 10.1109/VTCFall.2018.8690734]
[50] Qayyum A, Usama M, Qadir J, Al-Fuqaha A. Securing connected & autonomous vehicles: Challenges posed by adversarial machine
learning and the way forward. IEEE Communications Surveys & Tutorials, 2020, 22(2): 998–1026. [doi: 10.1109/COMST.2020.
2975048]
[51] Lee S, Lee DH. From attack to identification: MEMS sensor fingerprinting using acoustic signals. IEEE Internet of Things Journal,
2022, 10(6): 5447–5460.
[52] Man YM, Muller R, Li M, Celik ZB, Gerdes R. That person moves like a car: Misclassification attack detection for autonomous systems
using spatiotemporal consistency. In: Proc. of the 32nd USENIX Conf. on Security Symp. Anaheim: USENIX Association, 2023.
6929–6946.
[53] Hall DL, Llinas J. An introduction to multisensor data fusion. Proc. of the IEEE, 1997, 85(1): 6–23. [doi: 10.1109/5.554205]
[54] Chandrasekaran B, Gangadhar S, Conrad JM. A survey of multisensor fusion techniques, architectures and methodologies. In: Proc. of
the 2017 Annual IEEE Region 3 Technical, Professional, and Student Conf. Concord: IEEE, 2017. 1–8. [doi: 10.1109/SECON.2017.
7925311]
[55] Liu JS, Park J. “Seeing is not always believing”: Detecting perception error attacks against autonomous vehicles. IEEE Trans. on
Dependable and Secure Computing, 2021, 18(5): 2209–2223. [doi: 10.1109/TDSC.2021.3078111]
[56] Kai J, Schäfer M, Moser D, Lenders V, Pöpper C, Schmitt J. Crowd-GPS-Sec: Leveraging crowdsourcing to detect and localize GPS
spoofing attacks. In: Proc. of the 2018 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2018. 1018–1031. [doi: 10.1109/
SP.2018.00012]
[57] Thilak KD, Amuthan A. DoS attack on VANET routing and possible defending solutions—A survey. In: Proc. of the 2016 Int’l Conf. on
Information Communication and Embedded Systems (ICICES). Chennai: IEEE, 2016. 1–7. [doi: 10.1109/ICICES.2016.7518892]
[58] Petit J. Analysis of ECDSA authentication processing in VANETs. In: Proc. of the 3rd Int’l Conf. on New Technologies, Mobility and
Security. Cairo: IEEE, 2009. 1–5. [doi: 10.1109/NTMS.2009.5384696]
[59] Kumar S, Mann KS. Prevention of DoS attacks by detection of multiple malicious nodes in VANETs. In: Proc. of the 2019 Int’l Conf.
on Automation, Computational and Technology Management. London: IEEE, 2019. 89–94. [doi: 10.1109/ICACTM.2019.8776846]
[60] Patel KN, Jhaveri RH. Isolating packet dropping misbehavior in VANET using ant colony optimization. Int’l Journal of Computer
Applications, 2015, 120(24): 5–9. [doi: 10.5120/21406-4161]
[61] Kamel J, Haidar F, Jemaa IB, Kaiser A, Lonc B, Urien P. A misbehavior authority system for Sybil attack detection in C-ITS. In: Proc.
of the 10th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conf. (UEMCON). New York: IEEE, 2019.
1117–1123. [doi: 10.1109/UEMCON47517.2019.8993045]
[62] Xu YY, Lei M, Li M, Zhao MJ, Hu B. A new anti-jamming strategy based on deep reinforcement learning for MANET. In: Proc. of the
89th IEEE Vehicular Technology Conf. (VTC2019-Spring). Kuala Lumpur: IEEE, 2019. 1–5. [doi: 10.1109/VTCSpring.2019.8746494]
[63] Narayanadoss AR, Truong-Huu T, Mohan PM, Gurusamy M. Crossfire attack detection using deep learning in software defined ITS
networks. In: Proc. of the 89th IEEE Vehicular Technology Conf. (VTC2019-Spring). Kuala Lumpur: IEEE, 2019. 1–6. [doi: 10.1109/
VTCSpring.2019.8746594]
[64] Gruebler A, McDonald-Maier KD, Alheeti KMA. An intrusion detection system against black hole attacks on the communication
network of self-driving cars. In: Proc. of the 6th Int’l Conf. on Emerging Security Technologies (EST). Braunschweig: IEEE, 2015.
86–91. [doi: 10.1109/EST.2015.10]
[65] Ali S, Nand P, Tiwari S. Detection of wormhole attack in vehicular ad-hoc network over real map using machine learning approach with
preventive scheme. Journal of Information Technology Management, 2022, 14: 159–179. [doi: 10.22059/jitm.2022.86658]
[66] Khanapuri E, Chintalapati T, Sharma R, Gerdes R. Learning-based adversarial agent detection and identification in cyber physical
systems applied to autonomous vehicular platoon. In: Proc. of the 5th IEEE/ACM Int’l Workshop on Software Engineering for Smart