Page 471 - 《软件学报》2025年第4期
P. 471

郗来乐 等: 智能网联汽车自动驾驶安全: 威胁、攻击与防护                                                   1877


                      driving under GPS spoofing (extended version). In: Proc. of the 29th USENIX Security Symp. USENIX Association, 2020. 931–948.
                 [45]  Narain S, Ranganathan A, Noubir G. Security of GPS/INS based on-road location tracking systems. arXiv:1808.03515, 2018.
                 [46]  Shao BJ, Wan TQ, Liao FY, Kim BJ, Chen JW, Guo JM, Ma SJ, Ahn JH, Chai Y. Highly trustworthy in-sensor cryptography for image
                      encryption and authentication. ACS Nano, 2023, 17(11): 10291–10299. [doi: 10.1021/acsnano.3c00487]
                 [47]  Matsumura R, Sugawara T, Sakiyama K. A secure LiDAR with AES-based side-channel fingerprinting. In: Proc. of the 6th Int’l Symp.
                      on Computing and Networking Workshops (CANDARW). Takayama: IEEE, 2018. 479–482. [doi: 10.1109/CANDARW.2018.00092]
                 [48]  Dang YC, Benzaïd C, Yang B, Taleb T. Deep learning for GPS spoofing detection in cellular-enabled UAV systems. In: Proc. of the
                      2021 Int’l Conf. on Networking and Network Applications. Lijiang: IEEE, 2022. 501–506. [doi: 10.1109/NaNA53684.2021.00093]
                 [49]  Kapoor  P,  Vora  A,  Kang  KD.  Detecting  and  mitigating  spoofing  attack  against  an  automotive  radar.  In:  Proc.  of  the  88th  IEEE
                      Vehicular Technology Conf. (VTC-Fall). Chicago: IEEE, 2018. 1–6. [doi: 10.1109/VTCFall.2018.8690734]
                 [50]  Qayyum A, Usama M, Qadir J, Al-Fuqaha A. Securing connected & autonomous vehicles: Challenges posed by adversarial machine
                      learning  and  the  way  forward.  IEEE  Communications  Surveys  &  Tutorials,  2020,  22(2):  998–1026.  [doi:  10.1109/COMST.2020.
                      2975048]
                 [51]  Lee S, Lee DH. From attack to identification: MEMS sensor fingerprinting using acoustic signals. IEEE Internet of Things Journal,
                      2022, 10(6): 5447–5460.

                 [52]  Man YM, Muller R, Li M, Celik ZB, Gerdes R. That person moves like a car: Misclassification attack detection for autonomous systems
                      using  spatiotemporal  consistency.  In:  Proc.  of  the  32nd  USENIX  Conf.  on  Security  Symp.  Anaheim:  USENIX  Association,  2023.
                      6929–6946.
                 [53]  Hall DL, Llinas J. An introduction to multisensor data fusion. Proc. of the IEEE, 1997, 85(1): 6–23. [doi: 10.1109/5.554205]
                 [54]  Chandrasekaran B, Gangadhar S, Conrad JM. A survey of multisensor fusion techniques, architectures and methodologies. In: Proc. of
                      the 2017 Annual IEEE Region 3 Technical, Professional, and Student Conf. Concord: IEEE, 2017. 1–8. [doi: 10.1109/SECON.2017.
                      7925311]
                 [55]  Liu  JS,  Park  J.  “Seeing  is  not  always  believing”:  Detecting  perception  error  attacks  against  autonomous  vehicles.  IEEE  Trans.  on
                      Dependable and Secure Computing, 2021, 18(5): 2209–2223. [doi: 10.1109/TDSC.2021.3078111]
                 [56]  Kai J, Schäfer M, Moser D, Lenders V, Pöpper C, Schmitt J. Crowd-GPS-Sec: Leveraging crowdsourcing to detect and localize GPS
                      spoofing attacks. In: Proc. of the 2018 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2018. 1018–1031. [doi: 10.1109/
                      SP.2018.00012]
                 [57]  Thilak KD, Amuthan A. DoS attack on VANET routing and possible defending solutions—A survey. In: Proc. of the 2016 Int’l Conf. on
                      Information Communication and Embedded Systems (ICICES). Chennai: IEEE, 2016. 1–7. [doi: 10.1109/ICICES.2016.7518892]
                 [58]  Petit J. Analysis of ECDSA authentication processing in VANETs. In: Proc. of the 3rd Int’l Conf. on New Technologies, Mobility and
                      Security. Cairo: IEEE, 2009. 1–5. [doi: 10.1109/NTMS.2009.5384696]
                 [59]  Kumar S, Mann KS. Prevention of DoS attacks by detection of multiple malicious nodes in VANETs. In: Proc. of the 2019 Int’l Conf.
                      on Automation, Computational and Technology Management. London: IEEE, 2019. 89–94. [doi: 10.1109/ICACTM.2019.8776846]
                 [60]  Patel  KN,  Jhaveri  RH.  Isolating  packet  dropping  misbehavior  in  VANET  using  ant  colony  optimization.  Int’l  Journal  of  Computer
                      Applications, 2015, 120(24): 5–9. [doi: 10.5120/21406-4161]
                 [61]  Kamel J, Haidar F, Jemaa IB, Kaiser A, Lonc B, Urien P. A misbehavior authority system for Sybil attack detection in C-ITS. In: Proc.
                      of the 10th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conf. (UEMCON). New York: IEEE, 2019.
                      1117–1123. [doi: 10.1109/UEMCON47517.2019.8993045]
                 [62]  Xu YY, Lei M, Li M, Zhao MJ, Hu B. A new anti-jamming strategy based on deep reinforcement learning for MANET. In: Proc. of the
                      89th IEEE Vehicular Technology Conf. (VTC2019-Spring). Kuala Lumpur: IEEE, 2019. 1–5. [doi: 10.1109/VTCSpring.2019.8746494]
                 [63]  Narayanadoss AR, Truong-Huu T, Mohan PM, Gurusamy M. Crossfire attack detection using deep learning in software defined ITS
                      networks. In: Proc. of the 89th IEEE Vehicular Technology Conf. (VTC2019-Spring). Kuala Lumpur: IEEE, 2019. 1–6. [doi: 10.1109/
                      VTCSpring.2019.8746594]
                 [64]  Gruebler  A,  McDonald-Maier  KD,  Alheeti  KMA.  An  intrusion  detection  system  against  black  hole  attacks  on  the  communication
                      network of self-driving cars. In: Proc. of the 6th Int’l Conf. on Emerging Security Technologies (EST). Braunschweig: IEEE, 2015.
                      86–91. [doi: 10.1109/EST.2015.10]
                 [65]  Ali S, Nand P, Tiwari S. Detection of wormhole attack in vehicular ad-hoc network over real map using machine learning approach with
                      preventive scheme. Journal of Information Technology Management, 2022, 14: 159–179. [doi: 10.22059/jitm.2022.86658]
                 [66]  Khanapuri  E,  Chintalapati  T,  Sharma  R,  Gerdes  R.  Learning-based  adversarial  agent  detection  and  identification  in  cyber  physical
                      systems applied to autonomous vehicular platoon. In: Proc. of the 5th IEEE/ACM Int’l Workshop on Software Engineering for Smart
   466   467   468   469   470   471   472   473   474   475   476