Page 132 - 摩擦学学报2025年第4期
P. 132

620                                    摩擦学学报(中英文)                                        第 45 卷

            界面缺陷的扩散-反应结合界面在MoS @Cu与基体                              811–821]. doi: 10.16078/j.tribology.2023129.
                                               2
            之间形成,而MoS @Ni与基体形成高强度的扩散结合                         [  6  ]   Lü Bo, Wang Sanquan, Lin Haosheng, et al. Development of high
                           2
                                                                   energy  and  high  power  density  wet  Cu-based  friction  material[J].
            界面.
                                                                   Powder Metallurgy Industry, 2022, 32(5): 24–30 (in Chinese) [吕波,
                b. 随着滑动速度的提高,材料的摩擦系数整体呈
                                                                   王三全, 林浩盛, 等. 高能量高功率密度湿式铜基摩擦材料的研
            现降低趋势,其中Cu-BFM-MoS @Cu试样因MoS 发生                        制[J]. 粉末冶金工业, 2022, 32(5): 24–30]. doi: 10.13228/j.boyuan.
                                       2
                                                      2
            分解导致表面分布的润滑组元体积减少,而在低速                                 issn1006-6543.20220107.
            下(3 000 r/min)具有较高的摩擦系数(>0.1). 而在高速                [  7  ]   Wang Wenzhang, Liu Lianjun, Xu Baohai, et al. Effect of sintering
            下(6 000 r/min),MoS @Ni因其对摩擦过程的稳定作                      temperature  on  properties  of  wet  Cu-based  Powder  metallurgy
                              2
            用而致使Cu-BFM-MoS @Ni试样兼具较高的摩擦系                           friction materials[J]. Hot Working Technology, 2021, 50(10): 67–69
                                 2
                                                                   (in Chinese) [王稳章, 刘联军, 徐保海, 等. 烧结温度对湿式铜基粉
            数(>0.088)与稳定系数(>0.57).
                                                                   末 冶 金 摩 擦 材 料 性 能 的 影 响 [J].  热 加 工 工 艺 ,  2021,  50(10):
                c. 在所有的测试条件下,含MoS @Ni铜基摩擦材
                                            2
                                                                   67–69]. doi: 10.14158/j.cnki.1001-3814.20202865.
            料的耐磨性均优于含MoS @Cu的摩擦材料,尤其在
                                   2
                                                               [  8  ]   Xiao Yelong, Cheng Yu, Zhao Huoping, et al. Airborne brake wear
            高相对滑动速度下(6 000 r/min),Cu-BFM-MoS @Ni                   particle emissions: a review[J]. Tribology, 2022, 42(6): 1290–1304
                                                      2
            试样的磨损率比Cu-BFM-MoS @Cu试样低30%以上.                         (in Chinese) [肖叶龙, 成煜, 赵火平, 等. 制动磨损源大气颗粒物排
                                      2
                d. 犁削磨损是较低的相对滑动速度工况下的主                             放的研究进展[J]. 摩擦学学报, 2022, 42(6): 1290–1304]. doi: 10.
            要的磨损机制. 随着相对滑动速度的提升,Cu-BFM-                            16078/j.tribology.2021214.
            MoS @Cu摩擦材料试样的磨损机制开始由单一的犁                          [  9  ]   Cao  Jingyu,  Bao  Jiusheng,  Yin  Yan,  et  al.  Influence  of  braking
                2
                                                                   conditions  on  wear  performance  of  automobile  semi-metal  brake
            削磨损向犁削和油楔/疲劳诱导的剥层复合磨损转变.
                                                                   pad[J]. Tribology, 2021, 41(2): 160–168 (in Chinese) [曹靖雨, 鲍久
            参 考 文 献                                                圣, 阴妍, 等. 制动工况对汽车半金属刹车片磨损性能的影响[J].
                                                                   摩 擦 学 学 报 ,  2021,  41(2):  160–168].  doi:  10.16078/j.tribology.
            [  1  ]   Jen  T  C,  Nemecek  D  J.  Thermal  analysis  of  a  wet-disk  clutch
                                                                   2020073.
                 subjected to a constant energy engagement[J]. International Journal
                                                               [10]   Wang Qi, Yao Pingping, Zhou Haibin, et al. Wear Map of Cu-based
                 of  Heat  and  Mass  Transfer,  2008,  51(7–8):  1757–1769.  doi:  10.
                                                                   Powder  Metallurgy  Friction  Materials  using  Cr  as  a  Friction
                 1016/j.ijheatmasstransfer.2007.07.009.
                                                                   Component[J]. Tribology, 2017, 37(3): 364–371 (in Chinese) [王奇,
            [  2  ]   Li Jianghong, Xiong Xiang, Zhang Hongbo, et al. Friction surface
                                                                   姚萍屏, 周海滨, 等. 含Cr铜基粉末冶金摩擦材料的磨损图研
                 and  wear  debris  of  carbon-carbon  composites  under  simulating
                 normal  braking  condition[J].  Tribology,  2008,  28(2):  161–166  (in  究[J]. 摩擦学学报, 2017, 37(3): 364–371]. doi: 10.16078/j.tribology.
                 Chinese) [李江鸿, 熊翔, 张红波, 等. 模拟正常刹车条件下C/C复          2017.03.012.
                 合 材 料 的 摩 擦 表 面 结 构 分 析 [J].  摩 擦 学 学 报 ,  2008,  28(2):  [11]   Ingram  M,  Spikes  H,  Noles  J,  et  al.  Contact  properties  of  a  wet
                 161–166]. doi: 10.3321/j.issn:1004-0595.2008.02.013.  clutch  friction  material[J].  Tribology  International,  2010,  43(4):
            [  3  ]   Sun  Tao,  Fan  Hengzhong,  Su  Yunfeng,  et  al.  Tribological  815–821. doi: 10.1016/j.triboint.2009.11.008.
                 performance  and  failure  mechanism  of  paper-based  friction  [12]   Zhang Hao, Hou Caihong, Guo Xuefang. Study on the performance
                 materials  sliding  against  steels  of  different  carbon  contents[J].  influence  of  rubber  powders  on  the  properties  of  friction
                 Tribology, 2020, 40(4): 477–488 (in Chinese) [孙涛, 樊恒中, 苏云  materials[J].  Synthetic  Materials  Aging  and  Application,  2021,
                 峰, 等. 纸基摩擦材料与不同含碳量钢配副之间的摩擦学性能及                    50(6): 81–83 (in Chinese) [张豪, 侯彩红, 郭雪芳. 橡胶粉对摩擦材
                 其失效机理研究[J]. 摩擦学学报, 2020, 40(4): 477–488]. doi: 10.  料性能的影响研究[J]. 合成材料老化与应用, 2021, 50(6): 81–83].
                 16078/j.tribology.2019253.                        doi: 10.16584/j.cnki.issn1671-5381.2021.06.026.
            [  4  ]   Dai  Weifu,  Gao  Chenghui,  He  Fushan,  et  al.  Tribological  [13]   Peng  Tao,  Yan  Qingzhi,  Zhang  Xiaolu,  et  al.  Role  of  titanium
                 performance  of  resin-based  composites  filled  with  rice  husk  carbide and alumina on the friction increment for Cu-based metallic
                 powder[J]. Tribology, 2015, 35(5): 543–549 (in Chinese) [戴维福,  brake pads under different initial braking speeds[J]. Friction, 2021,
                 高诚辉, 何福善, 等. 稻壳粉含量对树脂基复合材料摩擦学性能的                  9(6): 1543–1557. doi: 10.1007/s40544-020-0439-3.
                 影 响 [J].  摩 擦 学 学 报 ,  2015,  35(5):  543–549].  doi:  10.16078/j.  [14]   Zhang Peng, Zhang Lin, Wei Dongbin, et al. Adjusting function of
                 tribology.2015.05.005.                            MoS 2   on  the  high-speed  emergency  braking  properties  of  copper-
            [  5  ]   Yan  Fengchen,  Feng  Weimin,  Song  Hui,  et  al.  Friction  noise  based  brake  pad  and  the  analysis  of  relevant  tribo-film  of  eddy
                 characteristics of resin-based composites[J]. Tribology, 2024, 44(6):  structure[J].  Composites  Part  B:  Engineering,  2020,  185:  107779.
                 811–821 (in Chinese) [鄢枫宸, 凤维民, 宋晖, 等. 树脂基复合材料    doi: 10.1016/j.compositesb.2020.107779.
                 摩 擦 噪 声 特 性 研 究 [J].  摩 擦 学 学 报 (中 英 文 ),  2024,  44(6):  [15]   Zhang Xin, Guo Dan, Liu Junfeng, et al. Influences of metal coating
   127   128   129   130   131   132   133   134   135   136   137