Page 37 - 《摩擦学学报》2021年第5期
P. 37
626 摩 擦 学 学 报 第 41 卷
[杨磊, 杨向龙, 王甫军. 液滴撞击柔性材料表面铺展特性的实验 strain rate[J]. Tribology, 2018, 38(2): 129–137 (in Chinese) [刘奕
研究[J]. 实验流体力学, 2019, 33(3): 83–89]. doi: 10.11729/syltlx 壕, 黄柏林, 付忠学, 等. 基于Circular模型的大剪应变率点接触弹
20180086. 流界面滑移数值分析[J]. 摩擦学学报, 2018, 38(2): 129–137]. doi:
[12] Wang Xiaodong, Peng Xiaofeng, Min Jingchun. Hysteresis of 10.16078/j.tribology.2018.02.002.
contact angle at liquid-solid interface[J]. Journal of Engineering [24] Yang Ping, Cui Jinlei, Liu Xiaoling, et al. A further investigation on
Thermophysics, 2002, 23(1): 67–70 (in Chinese) [王晓东, 彭晓峰, the shear thinning rheology model based on the time of recovery and
闵敬春. 接触角滞后现象的理论分析[J]. 工程热物理学报, 2002, a simulation of the rheological behavior of squalane[J]. Tribology,
23(1): 67–70]. 2018, 38(1): 101–107 (in Chinese) [杨萍, 崔金磊, 刘晓玲, 等. 对基
[13] Ye Xuemin, Zhang Xiangshan, Li Minglan, et al. Dynamics of 于恢复时间的剪稀流变模型的进一步探讨及其对squalane油品流
evaporating drop on heated surfaces with different wettabilities[J]. 变 特 性 的 模 拟 [J]. 摩 擦 学 学 报 , 2018, 38(1): 101–107]. doi:
Acta Physica Sinica, 2018, 67(11): 156–167 (in Chinese) [叶学民, 10.16078/j.tribology.2018.01.013.
张湘珊, 李明兰, 等. 液滴在不同润湿性表面上蒸发时的动力学特 [25] Hopcroft M A, Nix W D, Kenny T W. What is the Young's modulus
性 [J]. 物 理 学 报 , 2018, 67(11): 156–167]. doi: 10.7498/aps.67. of silicon?[J]. Journal of Microelectromechanical Systems, 2010,
20180159. 19(2): 229–238. doi: 10.1109/JMEMS.2009.2039697.
[14] Tadmor R, Bahadur P, Leh A, et al. Measurement of lateral adhesion [26] Bico J, Reyssat É, Roman B. Elastocapillarity: when surface tension
forces at the interface between a liquid drop and a substrate[J]. deforms elastic solids[J]. Annual Review of Fluid Mechanics, 2018,
Physical Review Letters, 2009, 103(26): 266101. doi: 10.1103/ 50(1): 629–659. doi: 10.1146/annurev-fluid-122316-050130.
PhysRevLett.103.266101. [27] Style R W, Jagota A, Hui C Y, et al. Elastocapillarity: surface
[15] Lagubeau G, LeMerrer M, Clanet C, et al. Leidenfrost on a tension and the mechanics of soft solids[J]. Annual Review of
ratchet[J]. Nature Physics, 2011, 7(5): 395–398. doi: 10.1038/nphys Condensed Matter Physics, 2017, 8(1): 99–118. doi: 10.1146/annurev-
1925. conmatphys-031016-025326.
[16] Blake T D. The physics of moving wetting lines[J]. Journal of [28] Dogru S, Aksoy B, Bayraktar H, et al. Poisson's ratio of PDMS thin
Colloid and Interface Science, 2006, 299(1): 1–13. doi: 10.1016/ films[J]. Polymer Testing, 2018, 69: 375–384. doi: 10.1016/j.polymer-
j.jcis.2006.03.051. testing.2018.05.044.
[17] Gao N, Geyer F, Pilat D W, et al. How drops start sliding over solid [29] Rapp B E. Microfluidics: modeling, mechanics and mathematics[M].
surfaces[J]. Nature Physics, 2018, 14(2): 191–196. doi: 10.1038/ Elsevier, 2016.
nphys4305. [30] Daniel D, Timonen J V I, Li R P, et al. Origins of extreme liquid
[18] Zheng Wenjun. Kinematical behaviour of capillary-driven nematic repellency on structured, flat, and lubricated hydrophobic
flow in polydimethylsiloxane microchannels: The effects of the surfaces[J]. Physical Review Letters, 2018, 120(24): 244503. doi:
dimensions of the channels[J]. EPL (Europhysics Letters), 2017, 10.1103/physrevlett.120.244503.
118(5): 58003. doi: 10.1209/0295-5075/118/58003. [31] Bahadur V, Garimella S V. Electrowetting-based control of droplet
[19] Wang J D, Douville N J, Takayama S, et al. Quantitative analysis of transition and morphology on artificially microstructured
molecular absorption into PDMS microfluidic channels[J]. Annals of surfaces[J]. Langmuir, 2008, 24(15): 8338–8345. doi: 10.1021/
Biomedical Engineering, 2012, 40(9): 1862–1873. doi: 10.1007/ la800556c.
s10439-012-0562-z. [32] Johnston I D, McCluskey D K, Tan C L, et al. Mechanical
[20] Yuan Zhe, Li Zong'an, Tang Wenlai, et al. Microchannel processing characterization of bulk Sylgard 184 for microfluidics and
technology in PDMS microfluidic chips[J]. Micronanoelectronic microengineering[J]. Journal of Micromechanics and
Technology, 2019, 56(3): 239–247 (in Chinese) [袁哲, 李宗安, 唐 Microengineering, 2014, 24(3): 035017. doi: 10.1088/0960-
文来, 等. PDMS微流控芯片中的微通道加工技术[J]. 微纳电子技 1317/24/3/035017.
术, 2019, 56(3): 239–247]. doi: 10.13250/j.cnki.wndz.2019.03.012. [33] Valentin J D P, Qin X H, Fessele C, et al. Substrate viscosity plays
[21] Wang Lei. Mechanical properties of materials[M]. Shenyang: an important role in bacterial adhesion under fluid flow[J]. Journal
Northeastern University Press, 2014 (in Chinese) [王磊. 材料的力 of Colloid and Interface Science, 2019, 552: 247–257. doi:
学性能[M]. 沈阳: 东北大学出版社, 2014]. 10.1016/j.jcis.2019.05.043.
[22] Dolz M, Delegido J, Casanovas A, et al. A low-cost experiment on [34] Swartjes J J T M, Veeregowda D H, van der Mei H C, et al.
Newtonian and non-Newtonian fluids[J]. Journal of Chemical Normally oriented adhesion versus friction forces in bacterial
Education, 2005, 82(3): 445–447. doi: 10.1021/ed082p445. adhesion to polymer-brush functionalized surfaces under fluid
[23] Liu Yihao, Wong Pat lam, Fu Zhongxue, et al. Numerical analysis of flow[J]. Advanced Functional Materials, 2014, 24(28): 4435–4441.
EHL boundary slip effect applying circular model under big shear doi: 10.1002/adfm.201400217.