Page 36 - 《摩擦学学报》2021年第5期
P. 36

第 5 期                    董聪慧, 等: 微液滴在PDMS软基体表面的动态摩擦行为研究                                      625

                    200                                            clinical biochemical analysis systems based on microfluidic driving
                   Dynamic frictional force /µΝ   160          [  2  ]  38(2): 183–194 (in Chinese) [袁颖欣, 樊晨, 潘建章, 等. 基于微流
                                                                   and control technique[J]. Chinese Journal of Chromatography, 2020,

                                                                   控驱动和控制技术的临床生化分析系统研究进展[J]. 色谱, 2020,
                                                                   38(2): 183–194]. doi: 10.3724/SP.J.1123.2019.05006.
                                                                   Sun Guangtao, Zhang Hongpeng, Gu Changzhi, et al. High precision
                    120
                                                                   Chinese  Journal  of  Scientific  Instrument,  2019,  40(2):  59–66
                     80                                            microfluidic multi-parameter hydraulic oil detection chip design[J].
                                                                   (in Chinese) [孙广涛, 张洪朋, 顾长智, 等. 高精度微流体多参数液
                                                                   压油检测芯片设计[J]. 仪器仪表学报, 2019, 40(2): 59–66]. doi:
                           1.41     1.26      0.41
                               Elastic modulus/MPa                 10.19650/j.cnki.cjsi.J1804317.

               Fig. 9    Variation of dynamic frictional force with elastic  [  3  ]  Wang  Yu,  Fang  Qun.  Application  of  artificial  intelligence  in
                           modulus of the PDMS                     microfluidic  systems[J].  Chinese  Journal  of  Analytical  Chemistry,
                 图 9    动态摩擦力随PDMS弹性模量的变化趋势                        2020, 48(4): 439–448 (in Chinese) [王宇, 方群. 人工智能在微流控
                                                                   系统中的应用[J]. 分析化学, 2020, 48(4): 439–448]. doi: 10.19756/
                    700                                            j.issn.0253-3820.191682.
                           5 μL
                           10 μL                               [  4  ]  Samy R A, Suthanthiraraj P P A, George D, et al. Elastocapillarity-
                    Adhesion force/μN   500                    [  5  ]  substrates[J].  Microfluidics  and  Nanofluidics,  2019,  23(8):
                    600
                           15 μL
                                                                   based  transport  of  liquids  in  flexible  confinements  and  over  soft
                                                                   100.1–100.32. doi: 10.1007/s10404-019-2266-2.
                                                                   Zhang  Wei.  Structural  design,  surface  modification  of  flexible
                    400
                                                                   microchannels  and  applications  in  vital  signs  detection  of  body
                                                                   surface[D]. Shanghai: Donghua University, 2019 (in Chinese) [张伟.
                    300                                            柔性微通道的结构设计、表面修饰及其在体表环境检测中的应用
                          1.41      1.26      0.41                 [D]. 上海: 东华大学, 2019]. doi: 10.27012/d.cnki.gdhuu.2019.00
                               Elastic modulus/MPa                 0007.

             Fig. 10    Variation of adhesion force with elastic modulus of  [  6  ]  Qian  Mingyong,  Lin  Shanling,  Zeng  Suyun,  et  al.  Real-time
                               the PDMS                            dynamic driving system implementation of electrowetting display[J].
                  图 10    黏附力随PDMS弹性模量的变化趋势                        Opto-Electronic Engineering, 2019, 46(6): 87–95 (in Chinese) [钱明
                                                                   勇, 林珊玲, 曾素云, 等. 电润湿电子纸的实时动态显示驱动系统
            滴与PDMS表面之间的摩擦力,从而满足不同微流体                               实现[J]. 光电工程, 2019, 46(6): 87–95]. doi: 10.12086/oee.2019.
            控制系统的需求,为微流体的精确控制和参数选取提                                180623.
            供理论指导.                                             [  7  ]  Yu  Yingsong.  Substrate  elastic  deformation  due  to  vertical

                                                                   component  of  liquid-vapor  interfacial  tension[J].  Applied
            3    结论                                                Mathematics and Mechanics, 2012, 33(9): 1025–1042 (in Chinese)
                                                                   [余迎松. 液气界面张力垂直分量引起的基底弹性变形[J]. 应用数
                a. 微液滴在PDMS表面运动时摩擦力随时间增加                           学和力学, 2012, 33(9): 1025–1042]. doi: 10.3879/j.issn.1000-0887.
            会经历先增加,然后降低并最终平稳的变化趋势,从                                2012.09.001.
            而具有“最大静摩擦力”和“动态摩擦力”. 固液界面最                         [  8  ]  Andreotti B, Snoeijer J H. Statics and dynamics of soft wetting[J].
                                                                   Annual  Review  of  Fluid  Mechanics,  2020,  52(1):  285–308.  doi:
            大静摩擦力取决于液体的黏度和速度梯度,动态摩擦
                                                                   10.1146/annurev-fluid-010719-060147.
            力与微液滴体积、滑动速度和基体力学性能有关.
                                                               [  9  ]  Butler M, Box F, Robert T, et al. Elasto-capillary adhesion: Effect of
                b. 随着微液滴体积增加,固液界面接触线长度增                            deformability  on  adhesion  strength  and  detachment[J].  Physical
            加,从而动态摩擦力增加;随着滑动速度增加,接触线                               Review  Fluids,  2019,  4(3):  033601.  doi:  10.1103/physrevfluids.
                                                                   4.033601.
            长度和接触角滞后增加,从而动态摩擦力增加.
                                                               [10]  Wei Z, Schneider T M, Kim J, et al. Elastocapillary coalescence of
                c. 随着软基体力学性能增加,固液界面黏附力也
                                                                   plates  and  pillars[J].  Proceedings  of  the  Royal  Society
            随之减小,固液界面相对运动时的能量耗散降低,动
                                                                   A:Mathematical,  Physical  and  Engineering  Sciences,  2015,
            态摩擦力降低.                                                471(2175): 20140593. doi: 10.1098/rspa.2014.0593.
                                                               [11]  Yang  Lei,  Yang  Xianglong,  Wang  Fujun.  On  the  maximum
            参 考 文 献
                                                                   spreading of liquid droplets impacting on soft surfaces[J]. Journal of
            [  1  ]  Yuan Yingxin, Fan Chen, Pan Jianzhang, et al. Research advances in  Experiments  in  Fluid  Mechanics,  2019,  33(3):  83–89  (in Chinese)
   31   32   33   34   35   36   37   38   39   40   41