Page 42 - 《摩擦学学报》2021年第5期
P. 42
第 5 期 胡汉军, 等: 原子氧对非平衡磁控溅射MoS 2 -Ti复合薄膜真空摩擦学性能的影响 631
(a) 6.6 (b)
1.8
1.6 C1s 6.4 N1s
Intensity×10 −4 /a.u. 1.2 Intensity×10 −4 /a.u. 6.0
1.4
6.2
1.0
5.8
0.8
0.6 5.6
5.4
0.4
5.2
292 291 290 289 288 287 286 285 284 283 282 406 404 402 400 398 396 394 392
Binding energy/eV Binding energy/eV
2.6 2.6 S2p3/2
2.4 (c) (d) S2p3/2
2.5 S2p1/2
Mo3d3/2
Intensity×10 −3 /a.u. 2.2 Mo3d5/2 Intensity×10 −3 /a.u. 2.3
Mo3d5/2
2.4
2.0
1.8
1.6
2.2
1.4
1.2 S2s 2.1
Mo3d3/2 2.0 S2p1/2
1.0
0.8 1.9
240 238 236 234 232 230 228 226 224 222 170 170 168 166 164 162 160
Binding energy/eV Binding energy/eV
6.4 10
(e) (f)
6.3 9
Ti2p3/2 O1s O1s
Intensity×10 −3 /a.u. 6.1 Ti2p1/2 Intensity×10 −3 /a.u. 8 7 6 5
6.2
6.0
5.9 4
3
5.8 2
468 466 464 462 460 458 456 454 536 535 534 533 532 531 530 529 528 527
Binding energy/eV Binding energy/eV
Fig. 4 Curve-fitting of (a) C1s , (b) N1s, (c) Ti2p, (d) Mo3d , (e) S2p and (f) O1s spectra of the surface after AO irradiation( without
+
pre-etching by Ar ion)
+
图 4 原子氧辐照后表面(a)C1s , (b)N1s, (c)Ti2p, (d)Mo3d , (e)S2p和(f)O1s的精细谱分峰结果(无Ar 离子预溅射过程)
表 3 原子氧辐照前和辐照后表面的化学组成 现出Ti的原子占比随离子枪剥蚀而基本不变的趋势;
Table 3 Chemical compositions on the surface before and 而在Ⅱ点之后,剥蚀深度已经进入Ti层与基底粗糙峰
after AO irradiation
相互嵌合区域,表现出随着剥蚀的进行Ti含量降低和
Atoms fraction/%
Compositions Fe含量升高的趋势.
Before AO irradiation After AO irradiation
4+ 图6和图7分别为原子氧辐照后Mo (Mo3d 和
Mo as in MoS 2 5.33 1.32 5/2
6+
Mo as in MoO 3 2.66 2.85 3d )和Ti (Ti2p 和2p )元素化学态的深度剖析谱
3/2
3/2
1/2
4+
Mo as in MoO 2 3.14 0.00
2− 图. 图6表明在刻蚀10~360 min之间的所有周期内Mo3d
S as in MoS 2 11.38 2.61
6+ 2− 峰形基本一致,3d 和3d 峰位分别在228.9和232.03 eV,
S as in SO 4 0.43 3.23 5/2 3/2
4+
Ti as in TiO 2 2.26 1.56 峰面积比约在0.67,说明Mo仍然是以MoS 的形式存
2
3+
Ti as in Ti 2 O 3 0.33 0.00 在. 如图7所示,在刻蚀10~280 min之间的所有周期内
2- 2−
O as in TiO 2 , Ti 2 O 3, SO 4 ,
22.14 28.16 Ti2p峰形基本一致,2p 峰位在458.8 eV,表明这一区
MoO 3, MoO 2 3/2
2−
O as in −C−O, H 2 O 52.34 60.26 间的Ti主要是以TiO 的形式存在;在290 min之后Ti的
2