Page 153 - 《爆炸与冲击》2025年第12期
P. 153

第 45 卷    第 12 期                  爆    炸    与    冲    击                      Vol. 45, No. 12
                2025 年 12 月                   EXPLOSION AND SHOCK WAVES                          Dec., 2025

               DOI:10.11883/bzycj-2024-0485


                              基于非常规态近场动力学对混凝土

                                 动态拉伸断裂的数值模拟研究                                         *


                                               刘振华,孔祥振,洪    建,方    秦

                                 (陆军工程大学爆炸冲击防灾减灾全国重点实验室,江苏 南京 210007)

                  摘要: 为了准确预测爆炸冲击荷载作用下混凝土材料的动态拉伸断裂破坏,基于非常规态近场动力学理论框架,
               首先建立了修正的       Monaghan  人工体积黏性计算方法用于消除数值振荡;然后将前期建立的等效计算应变率方法植入
               前期研发的    Kong-Fang  混凝土材料模型中,用以准确计算应变率突变时的应变率效应;在此基础上,开展了一维杆中的
               弹性波传播的数值模拟,发现在力矢量状态上额外附加修正的                      Monaghan  人工体积黏性力矢量状态,可有效地抑制由
               变形梯度近似导致的非物理数值振荡现象,进而讨论分析了人工体积黏性参数的影响并给出了参数建议值;最后将模
               型用于混凝土试件层裂的数值模拟,对比分析了人工体积黏性、不同应变率效应计算方法对动态拉伸断裂预测结果的
               影响规律,数值模拟结果表明,准确预测混凝土材料动态拉伸断裂破坏需同时考虑修正的                                Monaghan  人工体积黏性和
               等效计算应变率,建立的考虑修正的            Monaghan  人工体积黏性和等效计算应变率的非常规态近场动力学模型可以较好
               地预测裂缝位置和数量,为爆炸冲击荷载作用下混凝土材料动态拉伸断裂破坏的数值模拟提供了新思路。
                  关键词: 动态断裂;修正的        Monaghan  人工体积黏性;等效计算应变率;非常规态近场动力学
                  中图分类号: O383   国标学科代码: 1303520   文献标志码: A


                 Numerical investigation on dynamic tensile fracture in concrete material
                                   by non-ordinary state-based peridynamics

                                     LIU Zhenhua, KONG Xiangzhen, HONG Jian, FANG Qin
                              (State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact,
                                   Army Engineering University of PLA, Nanjing 210007, Jiangsu, China)

               Abstract:  To accurately predict the dynamic tensile fracture in concrete materials subjected to impact and blast loadings, this
               study  first  establishes  a  modified  Monaghan  artificial  bulk  viscosity  computation  method  within  the  framework  of  a  non-
               ordinary state-based peridynamics (NOSB-PD) theory to eliminate numerical oscillations. Subsequently, the corrected strain-
               rate computation method, previously developed, is integrated into the Kong-Fang concrete material model, which was proposed
               earlier by the research group to calculate accurately the strain-rate effect during sudden changes. Based on the two methods
               above, numerical simulations of elastic wave propagation in a one-dimensional rod are conducted, and the results demonstrate
               that the additional inclusion of the modified Monaghan artificial bulk viscosity force vector state into the original force vector
               state can effectively suppress the non-physical numerical oscillations caused by the deformation gradient approximation. The
               superiority  of  the  modified  Monaghan  artificial  bulk  viscosity  is  validated  through  comparative  analysis  with  the  original
               Monaghan artificial bulk viscosity. Furthermore, the influence of the modified Monaghan artificial bulk viscosity parameters is
               investigated,  and  recommended  values  for  these  parameters  are  provided.  Finally,  the  aforementioned  model  is  used  to
               numerically simulate the spall test in concrete specimens, where the effects of including or excluding the modified Monaghan



                 *   收稿日期: 2024-12-11;修回日期: 2025-02-17
                   基金项目: 国家自然科学基金(52178515,52208513)
                   第一作者: 刘振华(1999- ),男,硕士研究生,liuzhenhua1025@163.com
                   通信作者: 孔祥振(1988- ),男,博士,副教授,ouckxz@163.com


                                                         124201-1
   148   149   150   151   152   153   154   155   156   157   158