Page 151 - 《爆炸与冲击》2025年第12期
P. 151

第 45 卷            王可慧,等: 两种材料结构弹体高速侵彻钢筋混凝土靶实验研究                                第 12 期


               参考文献:
               [1]   杨建超, 左新建, 何翔, 等. 弹体高速侵彻混凝土质量侵蚀实验研究 [J]. 实验力学, 2012, 27(1): 122–127.
                    YANG J C, ZUO X J, HE X, et al. Experimental study of projectile mass loss in high velocity penetration of concrete target [J].
                    Journal of Experimental Mechanics, 2012, 27(1): 122–127.
               [2]   DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into
                    concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
               [3]   ZHANG  X  Y,  WU  H  J,  ZHANG  S,  et  al.  Projectile  penetration  of  reinforced  concrete  considering  the  effect  of  steel
                    reinforcement:  experimental  study  and  theoretical  analysis  [J].  International  Journal  of  Impact  Engineering,  2020,  144:
                    103653. DOI: 10.1016/j.ijimpeng.2020.103653.
               [4]   WANG J, WU H J, DONG H, et al. Flow field analysis of long rod hypervelocity penetration into semi-infinite concrete
                    target [J]. Mechanics of Materials, 2023, 179: 104564. DOI: 10.1016/j.mechmat.2023.104564.
               [5]   GUO  L,  HE  Y,  ZHANG  X  F,  et  al.  Thermal-mechanical  analysis  on  the  mass  loss  of  high-speed  projectiles  penetrating
                    concrete targets [J]. European Journal of Mechanics - A/Solids, 2017, 65: 159–177. DOI: 10.1016/j.euromechsol.2017.03.011.
               [6]   GUO  L,  HE  Y,  ZHANG  X  F,  et  al.  Study  mass  loss  at  microscopic  scale  for  a  projectile  penetration  into  concrete  [J].
                    International Journal of Impact Engineering, 2014, 72: 17–25. DOI: 10.1016/j.ijimpeng.2014.05.001.
               [7]   周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2):
                    025101. DOI: 10.11858/gywlxb.20190841.
                    ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experiment on structural damage of supersonic projectiles with different
                    metal  materials  penetrating  into  reinforced  concrete  targets  [J].  Chinese  Journal  of  High  Pressure  Physics,  2020,  34(2):
                    025101. DOI: 10.11858/gywlxb.20190841.
               [8]   DENG Y J, CHEN X W, SONG W J. Dynamic cavity-expansion penetration model of elastic-cracked-crushed response for
                    reinforced-concrete  targets  [J].  International  Journal  of  Impact  Engineering,  2021,  157:  103981.  DOI:  10.1016/j.ijimpeng.
                    2021.103981.
               [9]   LU  Y  Y,  ZHANG  Q  M,  XUE  Y  J,  et  al.  Hypervelocity  penetration  of  concrete  targets  with  long-rod  steel  projectiles:
                    experimental and theoretical analysis [J]. International Journal of Impact Engineering, 2021, 148: 103742. DOI: 10.1016/j.
                    ijimpeng.2020.103742.
               [10]   KAMAL I M, ELTEHEWY E M. Projectile penetration of reinforced concrete blocks: test and analysis [J]. Theoretical and
                    Applied Fracture Mechanics, 2012, 60(1): 31–37. DOI: 10.1016/j.tafmec.2012.06.005.
               [11]   MU Z C, ZHANG W, WANG W, et al. Revising the penetration behavior of concrete-like and metal-like materials against the
                    rigid projectile impact [J]. Mechanics of Materials, 2020, 142: 103274. DOI: 10.1016/j.mechmat.2019.103274.
               [12]   FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J].
                    International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
               [13]   FREW  D  J,  FORRESTAL  M  J,  CARGILE  J  D.  The  effect  of  concrete  target  diameter  on  projectile  deceleration  and
                    penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.
                    01.012.
               [14]   武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI:
                    10.3969/j.issn.1000-1093.2012.01.009.
                    WU  H  J,  HUANG  F  L,  WANG  Y  N,  et  al.  Experimental  investigation  on  projectile  nose  eroding  effect  of  high-velocity
                    penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
               [15]   何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455
                    (2010)01-0001-06.
                    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J].
                    Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
               [16]   戴湘晖, 周刚, 沈子楷, 等. 高速弹体对钢筋混凝土靶的侵彻/贯穿效应实验研究 [J]. 高压物理学报, 2019, 33(5): 055101.
                    DOI: 10.11858/gywlxb.20180672.
                    DAI X H, ZHOU G, SHEN Z K, et al. Experimental study of high-speed projectile penetration/perforation into reinforced
                    concrete targets [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.


                                                         123301-11
   146   147   148   149   150   151   152   153   154   155   156