Page 152 - 《爆炸与冲击》2025年第12期
P. 152
第 45 卷 王可慧,等: 两种材料结构弹体高速侵彻钢筋混凝土靶实验研究 第 12 期
[17] FENG J, SONG M L, SUN W W, et al. Thick plain concrete targets subjected to high speed penetration of 30CrMnSiNi2A
steel projectiles: tests and analyses [J]. International Journal of Impact Engineering, 2018, 122: 305–317. DOI: 10.1016/j.
ijimpeng.2018.09.005.
[18] 郭磊, 何勇, 潘绪超, 等. 高速侵彻弹体表层侵蚀效应理论计算 [J]. 振动与冲击, 2018, 37(15): 51–58. DOI: 10.13465/j.
cnki.jvs.2018.15.007.
GUO L, HE Y, PAN X C, et al. Theoretical calculation for surface abrasion effect of projectiles penetrating in to concrete
targets with a high speed [J]. Journal of Vibration and Shock, 2018, 37(15): 51–58. DOI: 10.13465/j.cnki.jvs.2018.15.007.
[19] 梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. DOI:
10.11883/1001-1455(2008)01-0001-09.
LIANG B, CHEN X W, JI Y Q, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating
weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
[20] ZHAO J, CHEN X W, JIN F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion [J].
International Journal of Impact Engineering, 2010, 37(9): 971–979. DOI: 10.1016/j.ijimpeng.2010.03.008.
[21] 王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/
bzycj-2020-0463.
WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a
reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
[22] 任辉启. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.
REN Q H. The penetration effect of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016.
[23] 武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-
1093.2018.01.020.
WU H J, ZHANG S, HUANG F L. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta
Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
[24] GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL-NSIC-22 [R]. Oak
Ridge: Oak Ridge National Laboratory, 1968.
[25] 邓佳杰, 张先锋, 刘闯, 等. 头部非对称刻槽弹体侵彻混凝土目标性能研究 [J]. 兵工学报, 2018, 39(7): 1249–1258. DOI:
10.3969/j.issn.1000-1093.2018.07.001.
DENG J J, ZHANG X F, LIU C, et al. Research on penetration of asymmetrically grooved nose projectile into concrete
target [J]. Acta Armamentarii, 2018, 39(7): 1249–1258. DOI: 10.3969/j.issn.1000-1093.2018.07.001.
[26] 王可慧, 段建, 李明, 等. 降低终点弹道偏转效应弹体结构设计 [J]. 弹箭与制导学报, 2015, 35(3): 50–52,98. DOI: 10.15892/
j.cnki.djzdxb.2015.03.014.
WANG K H, DUAN J, LI M, et al. Penetrator design to reduce trajectory deflexion effect [J]. Journal of Projectiles, Rockets,
Missiles and Guidance, 2015, 35(3): 50–52,98. DOI: 10.15892/j.cnki.djzdxb.2015.03.014.
(责任编辑 王影)
123301-12

