Page 152 - 《爆炸与冲击》2025年第12期
P. 152

第 45 卷            王可慧,等: 两种材料结构弹体高速侵彻钢筋混凝土靶实验研究                                第 12 期

               [17]   FENG J, SONG M L, SUN W W, et al. Thick plain concrete targets subjected to high speed penetration of 30CrMnSiNi2A
                    steel  projectiles:  tests  and  analyses  [J].  International  Journal  of  Impact  Engineering,  2018,  122:  305–317.  DOI:  10.1016/j.
                    ijimpeng.2018.09.005.
               [18]   郭磊, 何勇, 潘绪超, 等. 高速侵彻弹体表层侵蚀效应理论计算 [J]. 振动与冲击, 2018, 37(15): 51–58. DOI: 10.13465/j.
                    cnki.jvs.2018.15.007.
                    GUO L, HE Y, PAN X C, et al. Theoretical calculation for surface abrasion effect of projectiles penetrating in to concrete
                    targets with a high speed [J]. Journal of Vibration and Shock, 2018, 37(15): 51–58. DOI: 10.13465/j.cnki.jvs.2018.15.007.
               [19]   梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. DOI:
                    10.11883/1001-1455(2008)01-0001-09.
                    LIANG B, CHEN X W, JI Y Q, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating
                    weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
               [20]   ZHAO J, CHEN X W, JIN F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion [J].
                    International Journal of Impact Engineering, 2010, 37(9): 971–979. DOI: 10.1016/j.ijimpeng.2010.03.008.
               [21]   王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/
                    bzycj-2020-0463.
                    WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a
                    reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
               [22]   任辉启. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.
                    REN Q H. The penetration effect of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016.
               [23]   武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-
                    1093.2018.01.020.
                    WU H J, ZHANG S, HUANG F L. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta
                    Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
               [24]   GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL-NSIC-22 [R]. Oak
                    Ridge: Oak Ridge National Laboratory, 1968.
               [25]   邓佳杰, 张先锋, 刘闯, 等. 头部非对称刻槽弹体侵彻混凝土目标性能研究 [J]. 兵工学报, 2018, 39(7): 1249–1258. DOI:
                    10.3969/j.issn.1000-1093.2018.07.001.
                    DENG  J  J,  ZHANG  X  F,  LIU  C,  et  al.  Research  on  penetration  of  asymmetrically  grooved  nose  projectile  into  concrete
                    target [J]. Acta Armamentarii, 2018, 39(7): 1249–1258. DOI: 10.3969/j.issn.1000-1093.2018.07.001.
               [26]   王可慧, 段建, 李明, 等. 降低终点弹道偏转效应弹体结构设计 [J]. 弹箭与制导学报, 2015, 35(3): 50–52,98. DOI: 10.15892/
                    j.cnki.djzdxb.2015.03.014.
                    WANG K H, DUAN J, LI M, et al. Penetrator design to reduce trajectory deflexion effect [J]. Journal of Projectiles, Rockets,
                    Missiles and Guidance, 2015, 35(3): 50–52,98. DOI: 10.15892/j.cnki.djzdxb.2015.03.014.
                                                                                            (责任编辑    王影)



























                                                         123301-12
   147   148   149   150   151   152   153   154   155   156   157