Page 86 - 《软件学报》2020年第12期
P. 86
3752 Journal of Software 软件学报 Vol.31, No.12, December 2020
[29] Kellermayer DI. Numerische optimierung von computer-modellen mittels der evolutionsstrategie Hans-Paul Schwefel Birkhäuser,
Basel and Stuttgart. 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1. Cybernetics and Systems, 1977.
[30] Beyer HG. Towards a theory of evolution strategies: Self-adaptation. Evolutionary Computation, 1995,3(3):311−347.
[31] Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 2001,9(2):
159−195.
[32] Friedrichs F, Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing, 2005,107−117.
[33] Muller SD, Marchetto J, Airaghi S, et al. Optimization based on bacterial chemotaxis. IEEE Trans. on Evolutionary Computation,
2002,6(1):16−29.
[34] Shepherd J, Mcdowell DL, Jacob KI, et al. Modeling morphology evolution and mechanical behavior during thermo-mechanical
processing of semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 2006,54(3):467−489.
[35] Schaul T, Glasmachers T, Schmidhuber J, et al. High dimensions and heavy tails for natural evolution strategies. In: Proc. of the
Genetic and Evolutionary Computation Conf. 2011. 845−852.
[36] Wierstra D, Schaul T, Glasmachers T, et al. Natural evolution strategies. Journal of Machine Learning Research, 2011.
[37] Berny A. Selection and reinforcement learning for combinatorial optimization. In: Proc. of the Parallel Problem Solving from
Nature. 2000. 601−610.
[38] Berny A. Statistical machine learning and combinatorial optimization. In: Proc. of the Theoretical Aspects of Evolutionary
Computing. Berlin, Heidelberg: Springer-Verlag, 2001. 287−306.
[39] Amari S. Natural gradient works efficiently in learning. Neural Computation, 1998,10(2):251−276.
[40] Amari S, Douglas SC. Why natural gradient. In: Proc. of the Int’l Conf. on Acoustics Speech and Signal Processing. 1998.
1213−1216.
[41] Omidvar MN, Li X, Yang Z, et al. Cooperative co-evolution for large scale optimization through more frequent random grouping.
In: Proc. of the Congress on Evolutionary Computation. 2010. 1−8.
[42] Tahir MA, Bouridane A, Kurugollu F. Simultaneous feature selection and feature weighting using hybrid tabu search/K-nearest
neighbor classifier. Pattern Recognition Letters, 2007,28(4):438−446.
[43] Hu Q, Che X, Zhang L, et al. Feature evaluation and selection based on neighborhood soft margin. Neurocomputing, 2010,
73(10-12):2114−2124.
[44] Huang J, Cai Y, Xu X. A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognition
Letters, 2007,28(13):1825−1844.
[45] Khan A, Baig AR. Multi-Objective feature subset selection using mRMR based enhanced ant colony optimization algorithm
(mRMR-EACO). Journal of Experimental and Theoretical Artificial Intelligence, 2016,28(6):1061−1073.
[46] Zhang X. Research of feature selection algorithm based on natural evolution strategy [MS. Thesis]. Changchun: Jilin University,
2020.
附中文参考文献:
[46] 张鑫.基于自然进化策略的特征选择算法研究[硕士学位论文].长春:吉林大学,2020.
张鑫(1994-),男,硕士,主要研究领域为进 李占山(1966-),男,博士,教授,博士生导
化计算,强化学习. 师,CCF 专业会员,主要研究领域为机器学
习,约束推理.