Page 85 - 《软件学报》2020年第12期
P. 85

张鑫  等:自然进化策略的特征选择算法研究                                                            3751


         们的算法应用到更多的优化领域,特别是一些可以并行的优化过程中来检验我们算法的性能.同时,尝试将我们
         的算法应用到实际的工业领域来考察算法的适用性.

         References:
          [1]    Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003,1157−1182.
          [2]    Liu H, Motoda H,  Setiono R,  et  al. Feature  selection: An ever evolving frontier  in  data mining.  Journal  of Machine  Learning
             Research, 2010,4−13.
          [3]    Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis, 1997,1(3):131−156.
          [4]    Chandrashekar G, Sahin F. A survey on feature selection methods. Computers & Electrical Engineering, 2014,40(1):16−28.
          [5]    Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence, 1997,97(1-2):273−324.
          [6]    Tan  KC, Teoh EJ, Yu Q,  et  al. A hybrid evolutionary algorithm  for attribute  selection  in  data mining. Expert  Systems with
             Applications, 2009,36(4):8616−8630.
          [7]    Bart S, Gomes CP. Hill-climbing Search. Encyclopedia of Cognitive Science, 2006.
          [8]    Pudil P,  Novovicova J, Kittler J,  et  al. Floating  search  methods in  feature selection. Pattern Recognition  Letters, 1994,15(11):
             1119−1125.
          [9]    Moustakidis SP,  Theocharis JB. SVM-FuzCoC:  A novel SVM-based feature selection  method using  a fuzzy  complementary
             criterion. Pattern Recognition, 2010,43(11):3712−3729.
         [10]    Xue B, Zhang M,  Browne  WN,  et  al. A  survey  on evolutionary computation approaches to  feature selection.  IEEE Trans.  on
             Evolutionary Computation, 2016,20(4):606−626.
         [11]    Zhu W,  Si G, Zhang Y,  et  al.  Neighborhood effective  information ratio for hybrid feature  subset  evaluation  and selection.
             Neurocomputing, 2013,99:25−37.
         [12]    Xue B, Zhang M, Browne  WN.  Particle  swarm optimization for  feature  selection  in classification:  A multi-objective approach.
             IEEE Trans. on Cybernetics, 2013,43(6):1656−1671.
         [13]    Tabakhi S, Moradi P, Akhlaghian  F,  et  al.  An unsupervised feature selection  algorithm based on  ant  colony optimization.
             Engineering Applications of Artificial Intelligence, 2014,112−123.
         [14]    Ghaemi M, Feizi-Derakhshi MR. Feature selection using forest optimization algorithm. Pattern Recognition, 2016,60:121−129.
         [15]    Zhang Y, Song XF, Gong DW. A return-cost-based binary firefly algorithm for feature selection. Information Sciences, 2017,418.
         [16]    Hammami M,  Bechikh  S, Hung C,  et  al. A multi-objective  hybrid  filter-wrapper evolutionary approach  for  feature selection.
             Memetic Computing, 2019,11(2):193−208.
         [17]    Hancer E. Differential evolution for feature selection: A fuzzy wrapper-filter approach. Soft Computing, 2019,23(13):5233−5248.
         [18]    Chen YP, Li Y, Wang G,  et  al.  A novel bacterial foraging optimization algorithm  for feature selection.  Expert Systems with
             Applications, 2017,83:1−17.
         [19]    Qian C, Yu Y, Zhou Z, et al. Subset selection by Pareto optimization. In: Proc. of the Neural Information Processing Systems. 2015.
             1774−1782.
         [20]    Feng C, Qian C, Tang K, et al. Unsupervised feature selection by Pareto optimization. In: Proc. of the National Conf on Artificial
             Intelligence. 2019.
         [21]    Derrac J, García S, Herrera F. Ifs-Coco: Instance and feature selection based on cooperative coevolution with nearest neighbor rule.
             Pattern Recognition, 2010,43(6):2082−2105.
         [22]    Hoffmeister F, Back T. Genetic algorithms and evolution strategies—Similarities and differences. In: Proc. of the Parallel Problem
             Solving from Nature. 1990. 455−469.
         [23]    Beyer H, Schwefel H. Evolution strategies—A comprehensive introduction. Natural Computing, 2002,1(1):3−52.
         [24]    Salimans T, Ho J, Chen X, et al. Evolution strategies as a scalable alternative to reinforcement learning. arXiv: Machine Learning,
             2017.
         [25]    Mnih V, Kavukcuoglu K,  Silver D,  et  al.  Human-Level  control through deep reinforcement  learning. Nature, 2015,518(7540):
             529−533.
         [26]    Gu  S, Cheng R, Jin Y,  et  al. Feature selection for high-dimensional  classification using  a  competitive swarm optimizer. Soft
             Computing, 2018,22(3):811−822.
         [27]    Dua D, Karra Taniskidou E. UCI machine learning repository.  Irvine:  University  of California,  School  of  Information and
             Computer Science, 2017. http://archive.ics.uci.edu/ml
         [28]    Rechenberg I. Evolutionsstrategie optimierung technischer systeme nach prinzipien der biologischen evolution. 1973.
   80   81   82   83   84   85   86   87   88   89   90