Page 87 - 《软件学报》2020年第12期
P. 87

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
         Journal of Software,2020,31(12):3753−3771 [doi: 10.13328/j.cnki.jos.005875]   http://www.jos.org.cn
         ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563


                                      ∗
         行程时间预测方法研究

               1
                       1
                              2
         柏梦婷 ,   林杨欣 ,   马   萌 ,   王   平  1,2,3
         1
          (北京大学  软件与微电子学院,北京  102600)
         2 (软件工程国家工程研究中心(北京大学),北京  100871)
         3 (高可信软件技术教育部重点实验室(北京大学),北京  100871)
         通讯作者:  马萌, E-mail: mameng@pku.edu.cn;  王平, E-mail: pwang@pku.edu.cn

         摘   要:  行程时间预测,有助于实施高级旅行者信息系统.自 20 世纪 90 年代起,已经有多种行程时间预测方法被研
         发出来.将行程时间预测方法分为模型驱动方法和数据驱动方法两大类.介绍了两种常见的模型驱动方法,即排队论
         模型和细胞传输模型.数据驱动方法被分类为参数方法和非参数方法:参数方法包括线性回归、自回归集成移动平
         均和卡尔曼滤波,非参数方法包括神经网络、支持向量回归、最近邻和集成学习方法.对现有行程时间预测方法从
         源数据、预测范围、准确率、优缺点和适用范围等方面进行了分析总结.针对现有方法的一些缺点,提出了可能的
         解决方案.给出了一种新颖的数据预处理框架和一个行程时间预测模型,最后指出了未来的研究方向.
         关键词:  行程时间预测;模型驱动;数据驱动;参数方法;非参数方法
         中图法分类号: TP391

         中文引用格式:  柏梦婷,林杨欣,马萌,王平.行程时间预测方法研究.软件学报,2020,31(12):3753−3771.  http://www.jos.org.cn/
         1000-9825/5875.htm
         英文引用格式: Bai MT, Lin YX, Ma M, Wang P. Survey of traffic travel-time prediction methods. Ruan Jian Xue Bao/Journal of
         Software, 2020,31(12):3753−3771 (in Chinese). http://www.jos.org.cn/1000-9825/5875.htm

         Survey of Traffic Travel-time Prediction Methods
                                   1
                                              2
                     1
         BAI Meng-Ting ,   LIN Yang-Xin ,   MA Meng ,   WANG Ping 1,2,3
         1 (School of Software and Microelectronics, Peking University, Beijing 102600, China)
         2 (National Engineering Research Center for Software Engineering (Peking University), Beijing 100871, China)
         3 (Key Laboratory of High Confidence Software Technologies of Ministry of Education (Peking University), Beijing 100871, China)
         Abstract:    Travel-time prediction can help implement advanced traveler information systems. In recent years, a variety of travel-time
         prediction methods have been developed. In this study, travel-time prediction methods are classified into two categories: model-driven and
         data-driven methods. Two common model-driven approaches are elaborated,  namely  queuing  theory and cell  transmission model. The
         data-driven  methods  are  classified into parametric  and non-parametric  methods. Parametric  methods include linear regression,
         autoregressive  integrated moving average, and Kalman  filtering. Non-parametric methods contain neural  networks,  support vector
         regression, nearest neighbors, and ensemble learning methods. Existing travel-time prediction methods are analyzed and concluded from
         source data, prediction range,  accuracy,  advantages, disadvantages, and  application  scenarios. Several solutions  are proposed for some
         shortcomings of existing methods. A novel data preprocessing framework and a travel-time prediction model are presented, and future
         research challenges are highlighted.
         Key words:    travel-time prediction; model-driven; data-driven; parametric methods; non-parametric methods


            ∗  基金项目:  国家重点研发计划(2017YFB1200700);  国家自然科学基金(61701007)
             Foundation item: National Key Research and Development  Program of China  (2017YFB1200700); National Natural  Science
         Foundation of China (61701007)
              收稿时间: 2018-11-03;  修改时间: 2019-05-08;  采用时间: 2019-07-10
   82   83   84   85   86   87   88   89   90   91   92