Page 83 - 《软件学报》2020年第12期
P. 83

张鑫  等:自然进化策略的特征选择算法研究                                                            3749


                Table 7    Classification accuracy and dimension reduction of MCC-NESand compared methods (3)
                            表 7   MCC-NES 及其对比算法的分类准确率和维度缩减率(3)
                    Spambase             CA (%)              DR (%)             Classifier
                    MCC-NES            92.47(10-fold)        57.89              RBF-SVM
                  ACOFSS+mRMR          91.40(10-fold)        59.32              RBF-SVM
                    MCC-NES            93.84(10-fold)        49.12               CART
                  ACOFSS+mRMR          93.60(10-fold)        40.35               CART
                     Sonar               CA (%)              DR (%)             Classifier
                    MCC-NES          96.83(70%~30%)          81.67               5-NN
                     FSFOA            86.98(70%~30%)         44.26               5-NN
                    PSO(4-2)          78.16(70%~30%)         81.26               5-NN
                     DE-FLS           76.77(70%~30%)          65.0               5-NN
                    MCC-NES          97.93(70%~30%)           78.0               1-NN
                     FSFOA            85.43(70%~30%)         57.37               1-NN
                   SVM-FuzCoc         73.17(70%~30%)         68.33               1-NN
                      SFS             66.43(50%-50%)         61.33               1-NN
                      SBS             62.20(50%-50%)         45.33               1-NN
                      SFFS            64.55(50%-50%)         61.33               1-NN
                    IFS-CoCo           85.70(10-flod)        57.17               1-NN
                    MCC-NES            81.20(2-fold)          90.0              RBF-SVM
                     FSFOA             65.86(2-fold)         54.09              RBF-SVM
                     HGAFS             87.02(2-fold)          75.0              RBF-SVM
                    ISEDBFO            92.80(10-flod)        56.66              RBF-SVM
                     ACBFO             93.50(10-flod)         56.5              RBF-SVM
                    MCC-NES            88.04(10-fold)        71.67               CART
                     FSFOA             82.69(10-fold)        52.45               CART
                    FS-NEIR            75.97(10-fold)        91.66               CART
                     Musk2               CA (%)              DR (%)             Classifier
                    MCC-NES          97.01(70%~30%)          80.28               1-NN
                    MCC-NES           96.92(70%~30%)         82.65               5-NN
                     DE-FLS           86.86(70%~30%)         78.67               5-NN
                     LSVT                CA (%)              DR (%)             Classifier
                    MCC-NES          97.11(70%~30%)           97.0               1-NN
                     FSFOA            89.47(70%~30%)         98.71               1-NN
                    Rc-BBFA           94.60(70%~30%)         56.45               1-NN
                     SRBCT               CA (%)              DR (%)             Classifier
                    MCC-NES          99.87(70%~30%)          98.62               1-NN
                     FSFOA            94.73(70%~30%)         49.06               1-NN
                   SVM-FuzCoc         98.88(70%~30%)         98.57               1-NN
                     Arcene              CA (%)              DR (%)             Classifier
                    MCC-NES          97.50(70%~30%)          98.44               1-NN
                     FSFOA            88.33(70%~30%)          61.9               1-NN
                    Rc-BBFA           92.50(70%~30%)         48.66               1-NN
                    MCC-NES          98.33(70%~30%)          98.27               CART
                     FSFOA            73.69(70%~30%)         77.67               CART
                    UFSACO            67.40(70%~30%)          99.8               CART
                    RNA-Seq              CA (%)              DR (%)             Classifier
                    MCC-NES          99.87(70%~30%)          99.46               1-NN
                    Rc-BBFA           94.53(70%~30%)         58.66               1-NN
                    Dorothea             CA (%)              DR (%)             Classifier
                    MCC-NES           95.42(70%~30%)         99.58               1-NN
                    MCC-NES          96.53(70%~30%)          99.63               CART
                     FSFOA            95.83(70%~30%)         26.03               CART

             在处理更高维的数据时,很多特征选择方法就显得无能为力了,比如在面对 LSVT,SRBCT,Arcene,RNA-Seq,
         Dorothea 数据集时.我们在设定的最大迭代时间内(24 hours)内测试了本文提出的方法,并与最新提出的几个特
         征选择方法 FSFOA,UFSACO,Rc-BBFA(该算法最适应于 1-NN 分类器,所以只选取了 1-NN 分类器的实验结果)
         进行比较.实验结果表明:在处理高维问题时,我们算法的准确率几乎都是最优的,并且特征数量即使达到
         100 000 时仍能给出令人满意的解.其中,在 Arcene 的 CART 分类器上更是比次优的准确率高出 25%,比
         UFSACO 算法高出 30%左右.而且与 Rc-BBFA,FSFOA 相比,我们的算法在解决高维问题时的分类准确率和维
         度缩减表现更为出色.
   78   79   80   81   82   83   84   85   86   87   88