Page 81 - 《软件学报》2020年第12期
P. 81

张鑫  等:自然进化策略的特征选择算法研究                                                            3747


             对比分类准确率,通过表 5~表 7 不难看出:当分类器和数据集划分方法相同时,对比其他所有算法,MCC-
         NES 在 Glass,Heart,Cleveland,Dermatology,Spambase,Musk2,LSVT,SRBCT,Arcene,RNA-Seq,Dorothea 等 11 个数
         据集上,其分类准确率都是最高的;而在 Wine 数据集的 Rbf-SVM 分类器上,分类准确率仅低于 HGAFS 算法
         0.6%;在 Vehicle 数据集的 Rbf-SVM 分类器上,低于 HGAFS 算法 3%;在 Segmentatin 数据集的 3-NN 分类器上,
         低于 FAFOA 算法 2.6%;在 Ionosphere 数据集的 Rbf-SVM 分类器上,低于 ISEDBFO 算法 0.9%;在 Sonar 数据集
         的 Rbf-SVM 分类器上,低于 ACBFO 算法 12%.其中:在 Sonar 数据集中,当分类器为 1NN 时,MCC-NES 分类准
         确率比 SBS 高出 35%.
                Table 5    Classification accuracy and dimension reduction of MCC-NESand compared methods (1)
                            表 5   MCC-NES 及其对比算法的分类准确率和维度缩减率(1)
                      Glass             CA (%)              DR (%)             Classifier
                    MCC-NES          85.23(70%~30%)          67.11              1-NN
                     FSFOA           71.88(70%~30%)          40.0               1-NN
                      SFS            72.24(70%~30%)          26.66              1-NN
                      SFFS           71.77(70%~30%)          37.77              1-NN
                    IFS-CoCo          55.44(10-fold)         41.11              1-NN
                    MCC-NES           70.61(2-fold)          55.56             RBF-SVM
                     FSFOA            68.22(2-fold)          60.0              RBF-SVM
                     HGAFS            65.51(2-fold)          44.44             RBF-SVM
                    MCC-NES           80.39(10-fold)         44.44              CART
                     FSFOA            75.7(10-fold)          50.0               CART
                     FS-NEIR          68.53(10-fold)         22.22              CART
                      Heart             CA (%)              DR (%)             Classifier
                    MCC-NES           85.56(10-fold)         61.53              3-NN
                     FSFOA            85.18(10-fold)         35.71              3-NN
                      NSM             84.0(10-fold)          69.23              3-NN
                    MCC-NES           85.18(2-fold)          53.84             RBF-SVM
                     FSFOA            84.07(2-fold)          50.0              RBF-SVM
                     HGAFS            82.59(2-fold)          76.92             RBF-SVM
                    MCC-NES           85.18(10-fold)         76.92              CART
                     FSFOA            85.15(10-fold)         48.07              CART
                     FS-NEIR          79.86(10-fold)         46.15              CART
                    Cleveland           CA (%)              DR (%)             Classifier
                    MCC-NES          67.11(70%~30%)          74.61              1-NN
                     FSFOA           55.55(70%~30%)          71.42              1-NN
                   SVM-FuzCoc        61.01(70%~30%)          46.1               1-NN
                      SFS            51.79(70%~30%)          47.7               1-NN
                      SBS            54.80(70%~30%)          38.5               1-NN
                      SFFS           49.50(70%~30%)          53.8               1-NN
                      Wine              CA (%)              DR (%)             Classifier
                    MCC-NES          99.53(70%~30%)          69.23              5-NN
                     FSFOA           99.20(70%~30%)          30.76              5-NN
                     PSO(4-2)         95.26(10-fold)         51.6               5-NN
                   FW-NSGA-II         98.98(10-fold)         53.84              5-NN
                    MCC-NES          99.44(70%~30%)          66.15              1-NN
                     FSFOA           98.07(70%~30%)          50.0               1-NN
                   SVM-FuzCoc        97.12(70%~30%)          53.84              1-NN
                      SFS            97.69(70%~30%)          35.38              1-NN
                      SBS            94.77(70%~30%)          46.15              1-NN
                      SFFS           96.56(70%~30%)          36.92              1-NN
                    MCC-NES           97.75(2-fold)          53.85             RBF-SVM
                     FSFOA            96.06(2-fold)          37.17             RBF-SVM
                     HGAFS            98.31(2-fold)          53.85             RBF-SVM
                    MCC-NES          99.26(70%~30%)          61.53              CART
                     FSFOA           96.0(70%~30%)           57.14              CART
                    UFSACO           95.08(70%~30%)          61.53              CART
                    MCC-NES           97.70(10-fold)         61.53              CART
                     FSFOA            96.06(10-fold)         21.42              CART
                     FS-NEIR          95.04(10-fold)         61.53              CART
                   FW-NSGA-II         98.62(10-fold)         57.69              CART
   76   77   78   79   80   81   82   83   84   85   86