Page 54 - 《真空与低温》2025年第4期
P. 54
李子兀等:一种新型的超流氦二流体模型梯度项离散方法 469
网格体心的速度由式(7)和式(8)求得,将其代 入式(28)可以获得。其中, ρA由式(29)得。
( ) ( ) ( )
ρ n,i−1 t+∆t ρ n t+∆t ρ n,i+1 t+∆t ρ n t+∆t ρ s,i−1 t+∆t ρ s t+∆t
− ρ s s∇T + ∇p ·S f + ρ s s∇T + ∇p ·S f + ρ s s∇T − ∇p ·S f −
A t i−1 ρ i−1 A t i+1 ρ i+1 A t i−1 ρ i−1
n,i−1 n,i+1 s,i−1 (28)
( ) ( t+∆t t )
ρ s,i+1 t+∆t ρ s t+∆t 2 ρ −ρ V i
ρ s s∇T − ∇p ·S f = ρA·S f −
A t i+1 ρ i+1 ∆t
s,i+1
∑ ∑
ρ n,i−1 t t+∆t ρ n,i+1 t t+∆t
ρA =− A v +S n,i−1 + A v +S n,i+1 −
n,k n,k
n,k n,k
A t A t
n,i−1 k=i或i−2 n,i+1 k=i或i+2
(29)
∑ ∑
ρ s,i−1 t t+∆t ρ s,i+1 t t+∆t
A v +S s,i−1 + A v +S s,i+1
A t s,k s,k A t s,k s,k
s,i−1 k=i或i−2 s,i+1 k=i或i+2
当梯度项被定义在体心时,将式(26)代入式(29), 可以得到式(31),对式(31)整理获得式(32)。
( t+∆t t+∆t t+∆t t+∆t ) ( t+∆t t+∆t t+∆t t+∆t )
ρ n,i−1 T i−2 −T i ρ n p i−2 − p i ρ n,i+1 T i −T i+2 ρ n p i − p i+2 ρ s,i−1
− ρ s s + S + ρ s s + S + ·
A t 2d ρ 2d A t 2d ρ 2d A t
n,i−1 n,i+1 s,i−1
( ) ( ) ( )
t
T t+∆t −T t+∆t ρ s p t+∆t − p t+∆t ρ s,i+1 T t+∆t −T t+∆t ρ s p t+∆t − p t+∆t 2 ρ t+∆t −ρ V i (30)
ρ s s i−2 i − i−2 i S − ρ s s i i+2 − i i+2 S = ρA·S f −
2d ρ 2d A t 2d ρ 2d ∆t
s,i+1
p
p
p
T
T
T
a T t+∆t +a T t+∆t +a T t+∆t +a p t+∆t +a p t+∆t +a p t+∆t = C (31)
i+2 i+2 i i i−2 i−2 i+2 i+2 i i i−2 i−2
| {z } | {z }
温度梯度项体心离散 压力梯度项体心离散
其中: Helium II in low-temperature and superconductive magnet
engineering[J]. Advances in Cryogenic Engineering,1978,23:
( )
a T i−2 = ρ s s ρ n,i−1 − ρ s,i−1 S (32)
2d A t n,i−1 A t s,i−1 358−362.
( )
[4] CLAUDET G,MARDION G B,JAGER B,et al. Design of
T
a = ρ s s ρ n,i+1 + ρ s,i+1 − ρ n,i−1 − ρ s,i−1 S (33)
i
2d A t A t A t A t the cryogenic system for the Tore Supra Tokamak[J]. Cryo-
n,i+1 s,i+1 n,i−1 s,i−1
( ) genics,1986,26(8):443−449.
ρ s s ρ n,i+1 ρ s,i+1
T
a i+2 = − + S (34)
2d A t A t [5] PAMELA J. Ten years of operation and developments on
n,i+1 s,i+1
( ) Tore Supra[J]. Fusion Engineering and Design,1999,46(2):
a p = − 1 ρ n,i ρ n,i−1 + ρ s,i ρ s,i−1 S (35)
i−2 t t 313−322.
2d ρ i A ρ i A
n,i−1 s,i−1
( ) ( ) [6] TOROSSIAN A. TF-coil system and experimental results of
p
a = ρ n,i ρ n,i+1 + ρ n,i−1 S + ρ s,i ρ s,i+1 + ρ s,i−1 S
i t t t t Tore Supra[J]. Fusion Engineering and Design, 1993, 20:
2dρ i A A 2dρ i A A
n,i+1 n,i−1 s,i+1 s,i−1
(36) 43−53.
( ) [7] KALININ V, TADA E, MILLET F, et al. ITER cryogenic
a p = − 1 ρ n,i ρ n,i+1 + ρ s,i ρ s,i+1 S (37) system[J]. Fusion Engineering and Design, 2006, 81(23):
i+2 t t
2d ρ i A ρ i A
n,i+1 s,i+1
(
)
2 ρ t+∆t −ρ V i 2589−2595.
t
C = ρA·S f − (38) [8] SARKAR B,TANK J,PANCHAL P,et al. Cryogenic sys-
∆t
tem of steady state superconducting Tokamak SST-1:Opera-
参考文献:
tional experience and controls[J]. Fusion Engineering and De-
[1] MILLER J R,SCIVER S W V,SCHNEIDER-MUNTAU H J. sign,2006,81(23):2633−2641.
An overview and status of the NHMFL 45-T hybrid project[J]. [9] DARWESCHSAD M,FINK S,FRIESINGER G,et al. Test
Journal of Cryogenics and Superconductivity Society of Ja- of the EURATOM LCT coil (NbTi conductor) with forced
pan,1996,31(5):240−249. flow He II cooling[J]. Fusion Engineering and Design,1999,
[2] BRUCE R,REYNAUD J,PASCALI S,et al. 3D CFD Tran- 45(4):361−375.
sient numerical simulation of superfluid helium[J]. Advances [10] ZHANG Q,LIU Z,LU X,et al. Progress of engineering de-
in Cryogenic Engineering,2017,278:012057. sign of CFETR cryogenic system[J]. Fusion Engineering and
[3] BON MARDION G,CLAUDET G,SEYFERT P,VERDIER J. Design,2022,177:113064.