Page 54 - 《真空与低温》2025年第4期
P. 54

李子兀等:一种新型的超流氦二流体模型梯度项离散方法                                        469


                  网格体心的速度由式(7)和式(8)求得,将其代                       入式(28)可以获得。其中,           ρA由式(29)得。
                       (                 )         (                 )         (                 )
                   ρ n,i−1    t+∆t  ρ n  t+∆t  ρ n,i+1    t+∆t  ρ n  t+∆t  ρ s,i−1    t+∆t  ρ s  t+∆t
                 −      ρ s s∇T  +  ∇p    ·S f +    ρ s s∇T  +  ∇p    ·S f +    ρ s s∇T  −  ∇p    ·S f −
                   A t       i−1  ρ    i−1     A t       i+1  ρ    i+1     A t        i−1  ρ   i−1
                    n,i−1                       n,i+1                       s,i−1                       (28)
                      (                )              (  t+∆t  t  )
                  ρ s,i+1   t+∆t  ρ s  t+∆t          2 ρ   −ρ V i
                       ρ s s∇T  −  ∇p    ·S f = ρA·S f −
                  A t       i+1  ρ   i+1                  ∆t
                   s,i+1
                                                                                     
                                              ∑                      ∑               
                                         ρ n,i−1    t  t+∆t     ρ n,i+1    t  t+∆t   
                                                               
                                  ρA =−          A v   +S n,i−1 +      A v   +S n,i+1 −
                                                                                        
                                                                                        
                                                               
                                                                             n,k n,k
                                                    n,k n,k
                                         A t                   A t                 
                                          n,i−1  k=i或i−2           n,i+1  k=i或i+2
                                                                                                    (29)
                                            ∑                      ∑              
                                           
                                       ρ s,i−1   t  t+∆t       ρ s,i+1    t  t+∆t   
                                                             
                                                A v   +S s,i−1 +      A v   +S s,i+1  
                                                             
                                           
                                       A t       s,k s,k      A t      s,k s,k   
                                           
                                        s,i−1  k=i或i−2           s,i+1  k=i或i+2
                  当梯度项被定义在体心时,将式(26)代入式(29),                    可以得到式(31),对式(31)整理获得式(32)。
                      (    t+∆t  t+∆t    t+∆t  t+∆t  )    (    t+∆t  t+∆t    t+∆t  t+∆t  )
                  ρ n,i−1  T i−2  −T i  ρ n p i−2  − p i  ρ n,i+1  T  i  −T i+2  ρ n p i  − p i+2  ρ s,i−1
                −      ρ s s        +             S +      ρ s s        +             S +     ·
                  A t         2d      ρ    2d         A t         2d      ρ    2d         A t
                   n,i−1                               n,i+1                               s,i−1
                (                          )        (                          )             (      )
                                                                                                    t
                    T  t+∆t  −T  t+∆t  ρ s p t+∆t  − p t+∆t  ρ s,i+1  T  t+∆t  −T  t+∆t  ρ s p t+∆t  − p t+∆t  2 ρ t+∆t  −ρ V i (30)
                 ρ s s  i−2  i  −  i−2   i  S −      ρ s s  i  i+2  −  i    i+2  S = ρA·S f −
                        2d      ρ    2d         A t        2d       ρ    2d                     ∆t
                                                 s,i+1
                                                                              p
                                                               p
                                                                       p
                                                      T
                                               T
                                      T
                                     a T  t+∆t  +a T  t+∆t  +a T  t+∆t  +a p t+∆t  +a p t+∆t  +a p t+∆t  = C  (31)
                                      i+2  i+2  i  i  i−2  i−2  i+2  i+2  i  i  i−2  i−2
                                     |                             {z                             } |                            {z                            }
                                           温度梯度项体心离散               压力梯度项体心离散
                  其中:                                              Helium  II  in  low-temperature  and  superconductive  magnet
                                                                   engineering[J]. Advances in Cryogenic Engineering,1978,23:
                                  (           )
                          a T i−2  =  ρ s s ρ n,i−1  −  ρ s,i−1  S  (32)
                               2d A  t n,i−1  A t s,i−1            358−362.
                         (                       )
                                                                [4]   CLAUDET G,MARDION G B,JAGER B,et al. Design of
                   T
                 a =  ρ s s ρ n,i+1  +  ρ s,i+1  −  ρ n,i−1  −  ρ s,i−1  S  (33)
                   i
                      2d A t    A t    A t   A t                   the cryogenic system for the Tore Supra Tokamak[J]. Cryo-
                           n,i+1  s,i+1  n,i−1  s,i−1
                                  (            )                   genics,1986,26(8):443−449.
                               ρ s s  ρ n,i+1  ρ s,i+1
                          T
                         a i+2  =  −     +      S     (34)
                               2d   A t    A t                  [5]   PAMELA  J.  Ten  years  of  operation  and  developments  on
                                     n,i+1  s,i+1
                             (                 )                   Tore Supra[J]. Fusion Engineering and Design,1999,46(2):
                    a p  = −  1 ρ n,i ρ n,i−1  +  ρ s,i ρ s,i−1  S  (35)
                     i−2           t        t                      313−322.
                           2d ρ i A     ρ i A
                                   n,i−1    s,i−1
                        (          )       (          )         [6]   TOROSSIAN A. TF-coil system and experimental results of
                  p
                 a =  ρ n,i ρ n,i+1  +  ρ n,i−1  S +  ρ s,i  ρ s,i+1  +  ρ s,i−1  S
                  i       t     t            t     t               Tore  Supra[J].  Fusion  Engineering  and  Design, 1993, 20:
                    2dρ i A    A       2dρ i A    A
                          n,i+1  n,i−1       s,i+1  s,i−1
                                                      (36)         43−53.
                             (                 )                [7]   KALININ  V, TADA  E, MILLET  F, et  al.  ITER  cryogenic
                    a p  = −  1 ρ n,i ρ n,i+1  +  ρ s,i ρ s,i+1  S  (37)  system[J].  Fusion  Engineering  and  Design, 2006, 81(23):
                     i+2           t        t
                           2d ρ i A     ρ i A
                                   n,i+1    s,i+1
                                      (
                                              )
                                     2 ρ t+∆t  −ρ V i              2589−2595.
                                             t
                         C = ρA·S f −                 (38)      [8]   SARKAR B,TANK J,PANCHAL P,et al. Cryogenic sys-
                                          ∆t
                                                                   tem of steady state superconducting Tokamak SST-1:Opera-
              参考文献:
                                                                   tional experience and controls[J]. Fusion Engineering and De-

              [1]   MILLER J R,SCIVER S W V,SCHNEIDER-MUNTAU H J.  sign,2006,81(23):2633−2641.
                 An overview and status of the NHMFL 45-T hybrid project[J].  [9]   DARWESCHSAD M,FINK S,FRIESINGER G,et al. Test
                 Journal of Cryogenics and Superconductivity Society of Ja-  of the EURATOM LCT coil (NbTi conductor) with forced
                 pan,1996,31(5):240−249.                           flow He II cooling[J]. Fusion Engineering and Design,1999,
              [2]   BRUCE R,REYNAUD J,PASCALI S,et al. 3D CFD Tran-  45(4):361−375.
                 sient numerical simulation of superfluid helium[J]. Advances  [10]   ZHANG Q,LIU Z,LU X,et al. Progress of engineering de-
                 in Cryogenic Engineering,2017,278:012057.          sign of CFETR cryogenic system[J]. Fusion Engineering and
              [3]   BON MARDION G,CLAUDET G,SEYFERT P,VERDIER J.    Design,2022,177:113064.
   49   50   51   52   53   54   55   56   57   58   59