Page 54 - 《中国医疗器械杂志》2025年第2期
P. 54
Chinese Journal of Medical Instrumentation 2025 年 第49卷 第2期
综 合 评 述
supervised learning[C]// Proceedings of the 18th IEEE Augmented reality visualization for laparoscopic
International Symposium on Biomedical Imaging. New surgery[M]//WELLS W M, COLCHESTER A, DELP S.
York, NY: IEEE, 2021: 733-737. MICCAI1998. Berlin, Germany: Springer-Verlag,
[30] DAHER R, VASCONCELOS F, STOYANOV D. A 1998:934-943.
temporal learning approach to inpainting endoscopic [43] LUO H L, YIN D L, ZHANG S G, et al. Augmented
specularities and its effect on image correspondence[J]. reality navigation for liver resection with a stereoscopic
Med Image Anal, 2023, 90: 102994. laparoscope[J]. Comput Methods Programs Biomed,
[31] LONG Y H, LI Z S, YEE C H, et al. E-DSSR: efficient 2020, 187: 105099.
dynamic surgical scene reconstruction with transformer- [44] FU Z M, JIN Z Y, ZHANG C A, et al. The future of
based stereoscopic depth perception[C]// Proceedings of endoscopic navigation: a review of advanced endoscopic
the International Conference on Medical Image vision technology[J]. IEEE Access, 2021, 9: 41144-
Computing and Computer Assisted Intervention. 41167.
Strasbourg, France: Springer International Publishing, [45] BARTHOLOMEW R A, ZHOU H Y, BOREEL M, et al.
2021: 415-425. Surgical navigation in the anterior skull base using 3-
[32] TUKRA S, MARCUS H J, GIANNAROU S. See-through dimensional endoscopy and surface reconstruction[J].
vision with unsupervised scene occlusion reconstruc- AMA Otolaryngol Head Neck Surg, 2024, 150(4): 318-
tion[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 326.
44(7): 3779-3790. [46] MERCORIO A, ZIZOLFI B, BARBUTO S, et al. Three-
[33] PSYCHOGYIOS D, MAZOMENOS E, VASCONCELOS dimensional imaging reconstruction and laparoscopic
F, et al. MSDESIS: multitask stereo disparity estimation robotic surgery: a winning combination for a complex
and surgical instrument segmentation[J]. IEEE Trans Med case of multiple myomectomy[J]. Fertil Steril, 2023,
Imaging, 2022, 41(11): 3218-3230. 120(1): 202-204.
[34] ZHU L T, WANG Z, CUI J H, et al. EndoGS: deformable [47] 李玲. 面向人机协同微创手术的智能感知与行为决策
endoscopic tissues reconstruction with Gaussian splat- 方法研究 [D]. 合肥: 合肥工业大学, 2022.
ting[EB/OL]. arXiv preprint, arXiv:2401.11535(2024-02- [48] 陆波, 刘会聪, 侯诚, 等. 手术机器人智能化视触感知与
12)[2024-05-30]. https://arxiv.org/abs/2401.11535. 自主化操作技术的发展与应用综述[J]. 机械设计与制
[35] 夏振平, 张博文, 王飞, 等. 三维医用电子内窥镜可视化 造工程, 2023, 52(2): 1-8.
中的几何畸变[J]. 液晶与显示, 2022, 37(1): 29-36. [49] 郭靖, 吴迪, 成卓奇, 等. 机器人辅助手术自主性技术的
[36] LIU S, PENG Y M, LUO L, et al. Study on binocular 3D 进展[J]. 机器人外科学杂志(中英文), 2023, 4(4): 281-
sensor vision system for 3D teeth model measure- 298.
ment[C]// Proceedings of the Annual Conference of the [50] SÁNCHEZ-GONZÁLEZ P, CANO A M, OROPESA I,
Chinese-Society-of-Optical-Engineering (CSOE) on et al. Laparoscopic video analysis for training and image-
Optical Sensing and Imaging Technology. Bellingham, guided surgery[J]. Minim Invasive Ther Allied Technol,
WA: SPIE Press, 2019: 723-731. 2011, 20(6): 311-320.
[37] MARRUGO A G, ROMERO L A, PINEDA J, et al. [51] GAVRILOVA M, KLIMENKO S, PESTRIKOV V, et al.
Toward an automatic 3D measurement of skin wheals Constructing three-dimensional models for surgical
from skin prick tests[C]// Proceedings of the Conference training simulators[C]// Proceedings of the 6th Interna-
on Dimensional Optical Metrology and Inspection for tional Conference on Health Information Science. Berlin,
Practical Applications Ⅷ. Bellingham, WA: SPIE Press, Germany: Springer-Verlag, 2017: 162-169.
2019: 9-18. [52] CHONG N N. 3D reconstruction of laparoscope images
[38] 倪宇明. 基于深度学习和双目视觉的头部自由遥测式 with contrastive learning methods[J]. IEEE Access, 2022,
瞳孔计研究[D]. 天津: 天津大学, 2020. 10: 4456-4470.
[39] WAGNER M, MAYER B F B, BODENSTEDT S, et al. [53] MILDENHALL B, SRINIVASAN P P, TANCIK M,
Computer-assisted 3D bowel length measurement for et al. NeRF: representing scenes as neural radiance fields
quantitative laparoscopy[J]. Surg Endosc, 2018, 32(9): for view synthesis[EB/OL]. arXiv preprint, arXiv:2003.
4052-4061. 08934(2020-08-03)[2024-05-30]. https://arxiv.org/abs/
[40] KHAMIS S, FANELLO S, RHEMANN C, et al. 2003.08934.
StereoNet: guided hierarchical refinement for real-time [54] KERBL B, KOPANAS G, LEIMKÜHLER T, et al. 3D
edge-aware depth prediction[C]// Proceedings of the 15th Gaussian splatting for real-time radiance field
European Conference on Computer Vision. Berlin, rendering[J]. ACM Trans, 2023, 42(4): 139: 1-139: 14.
Germany: Springer-Verlag, 2018: 596-613. [55] WANG Y H, LONG Y H, FAN S H, et al. Neural
[41] YU H, ZHOU C J, ZHANG W, et al. A three-dimensional rendering for stereo 3D reconstruction of deformable
measurement method for binocular endoscopes based on tissues in robotic surgery[C]// Proceedings of Interna-
deep learning[J]. Front Inf Technol Electron Eng, 2022, tional conference on medical image computing and
23(4): 653-660. computer-assisted intervention. Berlin, Germany:
[42] FUCHS H, LIVINGSTON M A, RASKAR R, et al. Springer-Verlag, 2022: 431-441.
168