Page 53 - 《中国医疗器械杂志》2025年第2期
P. 53

Chinese Journal of Medical Instrumentation                                         2025 年 第49卷 第2期

                                                    综     合     评    述



                  Computer Society, 2013: 1-8.                      estimation  network[J].  Comput  Biol  Med,  2023,  164:
              [4]   OKADA  Y,  KOISHI  T,  USHIKI  S,  et  al.  A  fast  stereo  107305 .
                  matching  algorithm  for  3D  reconstruction  of  internal  [17]   EDWARDS P J E, PSYCHOGYIOS D, SPEIDEL S, et
                  organs  in  laparoscopic  surgery[C]//  Proceedings  of  the  al. SERV-CT: a disparity dataset from cone-beam CT for
                  Medical  Imaging  2008  Conference.  Bellingham,  WA:  validation  of  endoscopic  3D  reconstruction[J].  Med
                  SPIE Press, 2008: 846-853.                        Image Anal, 2022, 76: 102302 .
              [5]   STOYANOV D, DARZI A, YANG G Z, et al. Real-time  [18]   YE  M  L,  JOHNS  E,  HANDA  A,  et  al.  Self-supervised
                  stereo  reconstruction  in  robotically  assisted  minimally  Siamese  learning  on  stereo  image  pairs  for  depth
                  invasive  surgery[C]//  Proceedings  of  the  13th  International  estimation  in  robotic  surgery[EB/OL].  arXiv  preprint,
                  Conference  on  Medical  Image  Computing  and  Computer-  arXiv, 1705.08260(2017-05-17)[2024-05-30]. https://arxiv.
                  Assisted  Intervention.  Berlin,  Germany:  Springer-Verlag,  org/abs/1705.08260.
                  2010: 275-282.                                [19]   BARDOZZO  F,  COLLINS  T,  FORGIONE  A,  et  al.
              [6]   陆明军. 双目医用内窥镜立体匹配技术的研究 [D]. 合                    StaSiS-Net:  a  stacked  and  siamese  disparity  estimation
                  肥: 合肥工业大学, 2021.                                  network  for  depth  reconstruction  in  modern  3D
              [7]   WEI G D, SHI W L, FENG G Y, et al. An automatic and  laparoscopy[J]. Med Image Anal, 2022, 77: 102380.
                  robust  visual  SLAM  method  for  intra-abdominal  [20]   YANG  Z  X,  SIMON  R,  LINTE  C  A.  Disparity
                  environment  reconstruction[J].  JACIII,  2023,  27(6):  refinement framework for learning-based stereo matching
                  1216-1229.                                        methods  in  cross-domain  setting  for  laparoscopic
              [8]   JIANG Y C, DONG Z H, MAI S P. Robust cost volume  images[J].  J  Med  Imaging  (Bellingham),  2023,  10(4):
                  generation  method  for  dense  stereo  matching  in  045001 .
                  endoscopic  scenarios[J].  Sensors  (Basel),  2023,  23(7):  [21]   WEI  R  F,  LI  B,  MO  H  J,  et  al.  Stereo  dense  scene
                  3427.                                             reconstruction  and  accurate  localization  for  learning-
              [9]   ZHANG X H, JI X Q, WANG J C, et al. Renal surface  based  navigation  of  laparoscope  in  minimally  invasive
                  reconstruction  and  segmentation  for  image-guided  surgery[J].  IEEE  Trans  Biomed  Eng,  2023,  70(2):  488-
                  surgical  navigation  of  laparoscopic  partial  nephrec-  500.
                  tomy[J]. Biomed Eng Lett, 2023, 13(2): 165-174.  [22]   ZHANG  G,  HUANG  Z  W,  LIN  J  Z,  et  al.  A  3D
              [10]   SHI  H  K,  WANG  Z  W,  ZHOU  Y,  et  al.  Bidirectional  reconstruction based on an unsupervised domain adaptive
                  semi-supervised  dual-branch  CNN  for  robust  3D  for  binocular  endoscopy[J].  Front  Physiol,  2022,  13:
                  reconstruction  of  stereo  endoscopic  images  via  adaptive  994343.
                  cross  and  parallel  supervisions[J].  IEEE  Trans  Med  [23]   CHEN L, TANG W, JOHN N W, et al. De-smokeGCN:
                  Imaging, 2023, 42(11): 3269-3282.                 generative cooperative networks for joint surgical smoke
              [11]   YANG  Z  Y,  DAI  J,  PAN  J  J.  3D  reconstruction  from  detection  and  removal[J].  IEEE  Trans  Med  Imaging,
                  endoscopy images: a survey[J]. Comput Biol Med, 2024,  2020, 39(5): 1615-1625.
                  175: 108546.                                  [24]   LUO H L, WANG C C, DUAN X G, et al. Unsupervised
              [12]   XU  H  F,  ZHANG  J  Y.  AANet:  adaptive  aggregation  learning  of  depth  estimation  from  imperfect  rectified
                  network for efficient stereo matching[C]// Proceedings of  stereo  laparoscopic  images[J].  Comput  Biol  Med,  2022,
                  the 2020 IEEE/CVF Conference on Computer Vision and  140: 105109.
                  Pattern Recognition. Los Alamitos, CA: IEEE Computer  [25]   YANG  Z  X,  SIMON  R,  LI  Y  M,  et  al.  Dense  depth
                  Society, 2020: 1956-1965.                         estimation  from  stereo  endoscopy  videos  using
              [13]   TANKOVICH V, HÄNE C, ZHANG Y D, et al. HITNet:  unsupervised  optical  flow  methods[C]//  Proceedings  of
                  hierarchical iterative tile refinement network for real-time  the  25th  Conference  on  Medical  Image  Understanding
                  stereo matching[C]// Proceedings of the 2021 IEEE/CVF  and  Analysis.  Berlin,  Germany:  Springer-Verlag,  2021:
                  Conference on Computer Vision and Pattern Recognition.  337-349.
                  Los  Alamitos,  CA:  IEEE  Computer  Society,  2021:  [26]   YANG  B,  XU  S  Y,  CHEN  H  R,  et  al.  Reconstruct
                  14357-14367.                                      dynamic  soft-tissue  with  stereo  endoscope  based  on  a
              [14]   XU  G  W,  CHENG  J  D,  GUO  P,  et  al.  Attention  single-layer network[J]. IEEE Trans Image Process, 2022,
                  concatenation  volume  for  accurate  and  efficient  stereo  31: 5828-5840.
                  matching[C]//  Proceedings  of  the  2022  IEEE/CVF  [27]   HE K M, ZHANG X Y, REN S Q, et al. Deep residual
                  Conference on Computer Vision and Pattern Recognition.  learning  for  image  recognition[C]//  Proceedings  of  the
                  Los  Alamitos,  CA:  IEEE  Computer  Society,  2022:  2016 IEEE Conference on Computer Vision and Pattern
                  12971-12980.                                      Recognition. New York, NY: IEEE, 2016: 770-778.
              [15]   WANG X Z, NIE Y F, LU S P, et al. Deep convolutional  [28]   XU  K,  CHEN  Z  Y,  JIA  F  C.  Unsupervised  binocular
                  network  for  stereo  depth  mapping  in  binocular  depth  prediction  network  for  laparoscopic  surgery[J].
                  endoscopy[J]. IEEE Access, 2020, 8: 73241-73249.  Comput Assist Surg (Abingdon), 2019, 24: 30-35.
              [16]   WANG  X  Z,  NIE  Y  F,  REN  W  Q,  et  al.  Multi-scale,  [29]   YANG H T, KAHRS L A. Real-time coarse-to-fine depth
                  multi-dimensional  binocular  endoscopic  image  depth  estimation  on  stereo  endoscopic  images  with  self-


                                                             167
   48   49   50   51   52   53   54   55   56   57   58