Page 31 - 卫星导航2021年第1-2合期
P. 31
El‑Sheimy and Li Satell Navig (2021) 2:7 Page 21 of 23
References IEEE 19th international conference on intelligent transportation systems
Abdulrahim, K., Hide, C., Moore, T., & Hill, C. (2010). Aiding MEMS IMU with (ITSC) (pp. 520–525). IEEE: Rio de Janeiro.
building heading for indoor pedestrian navigation. In 2010 ubiquitous Decawave. (2020). DWM1000 Module. https ://www.decaw ave.com/produ ct/
positioning indoor navigation and location based service. Helsinki: IEEE. dwm10 00‑modul e/. Accessed April 28, 2020.
Abdulrahim, K., Hide, C., Moore, T., & Hill, C. (2012). Using constraints for del Peral‑Rosado, J. A., Raulefs, R., López‑Salcedo, J. A., & Seco‑Granados, G.
shoe mounted indoor pedestrian navigation. Journal of Navigation, (2017). Survey of cellular mobile radio localization methods: From 1G to
65(1), 15–28. 5G. IEEE Communications Surveys and Tutorials, 20(2), 1124–1148.
Abuelsamid, S. (2017). BMW, HERE and mobileye team up to crowd‑source Dodge, D. (2013). Indoor Location startups innovating Indoor Positioning.
HD maps for self‑driving. https ://www.forbe s.com/sites /samab uelsa https ://dondo dge.typep ad.com/the_next_big_thing /2013/06/indoo
mid/2017/02/21/bmw‑here‑and‑mobil eye‑team‑up‑to‑crowd ‑sourc r‑locat ion‑start ups‑innov ating ‑indoo r‑posit ionin g.html. Accessed April
e‑hd‑maps‑for‑self‑drivi ng/#6f04e 0577c b3. Accessed April 28, 2020. 28, 2020.
Agency, E. G. (2019). Report on road user needs and requirements. https El‑Sheimy, N., & Niu, X. (2007a). The promise of MEMS to the navigation com‑
://www.gsc‑europ a.eu/sites /defau lt/fles /sites /all/fles /Repor t_on_ munity. Inside GNSS, 2(2), 46–56.
User_Needs _and_Requi remen ts_Road.pdf. Accessed April 28, 2020. El‑Sheimy, N., & Niu, X. (2007b). The promise of MEMS to the navigation com‑
Alvarez, D., González, R. C., López, A., & Alvarez, J. C. (2006). Comparison munity. Inside GNSS, 2(2), 26–56.
of step length estimators from weareable accelerometer devices. El‑Sheimy, N., Hou, H., & Niu, X. (2007). Analysis and modeling of inertial
Annual international conference of the IEEE engineering in medicine and sensors using Allan variance. IEEE Transactions on Instrumentation and
biology (pp. 5964–5967). IEEE: New York. Measurement, 57(1), 140–149.
Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & El‑Sheimy, N., & Youssef, A. (2020). Inertial sensors technologies for navigation
Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in applications: State of the art and future trends. Satellite Navigation, 1(1),
Communications, 32(6), 1065–1082. 2.
Badawy, A., Khattab, T., Trinchero, D., Fouly, T. E., & Mohamed, A. (2014). A FCC. (2015). FCC 15–9. https ://ecfsa pi.fcc.gov/fle/60001 02592 5.pdf. Accessed
simple AoA estimation scheme. arXiv:1409.5744. 28 April 2020.
Bai, L., Peng, C. Y., & Biswas, S. (2008). Association of DOA estimation from Foxlin, E. (2005). Pedestrian tracking with shoe‑mounted inertial sensors. IEEE
two ULAs. IEEE Transactions on Instrumentation and Measurement, Computer Graphics and Applications, 25(6), 38–46.
57(6), 1094–1101. https ://doi.org/10.1109/TIM.2007.91512 2. Gao, Z., Ge, M., Li, Y., Pan, Y., Chen, Q., & Zhang, H. (2020). Modeling of multi‑
Basnayake, C., Williams, T., Alves, P., & Lachapelle, G. J. G. W. (2010). Can GNSS sensor tightly aided BDS triple‑frequency precise point positioning and
Drive V2X? GPS World, 21(10), 35–43. initial assessments. Information Fusion, 55, 184–198.
Biber, P., & Straßer, W. (2003). The normal distributions transform: A new Gebre‑Egziabher, D., Elkaim, G. H., David Powell, J., & Parkinson, B. W. (2006).
approach to laser scan matching. Proceedings 2003 IEEE/RSJ international Calibration of strapdown magnetometers in magnetic feld domain.
conference on intelligent robots and systems (IROS) (pp. 2743–2748). IEEE: Journal of Aerospace Engineering, 19(2), 87–102.
Las Vegas, NV. Glennie, C., & Lichti, D. D. J. R. S. (2010). Static calibration and analysis of the
Bluetooth. (2017). Exploring Bluetooth 5—going the distance. https ://www. Velodyne HDL‑64E S2 for high accuracy mobile scanning. Remote Sens-
bluet ooth.com/blog/explo ring‑bluet ooth‑5‑going ‑the‑dista nce/. ing, 2(6), 1610–1624.
Accessed April 28, 2020. Godha, S., & Cannon, M. E. (2007). GPS/MEMS INS integrated system for naviga‑
Bluetooth. (2019). Bluetooth 5.1 Direction fnding. https ://www.bluet ooth. tion in urban areas. GPS Solutions, 11(3), 193–203.
com/wp‑conte nt/uploa ds/2019/05/BTAsi a/1145‑NORDI C‑Bluet ooth‑ Goldstein. (2019). Global Indoor Positioning and Indoor Navigation (IPIN)
Asia‑2019B lueto oth‑5.1‑Direc tion‑Findi ng‑Theor y‑and‑Pract ice‑v0.pdf. Market Outlook, 2024. https ://www.golds teinr esear ch.com/repor t/
Accessed April 28, 2020. globa l‑indoo r‑posit ionin g‑and‑indoo r‑navig ation ‑ipin‑marke t‑outlo
Brossard, M., Barrau, A., & Bonnabel, S. (2020). AI‑IMU dead‑reckoning. ok‑2024‑globa l‑oppor tunit y‑and‑deman d‑analy sis‑marke t‑forec ast‑
IEEE Transactions on Intelligent Vehicles, 5(4), 585–595. https ://doi. 2016‑2024. Accessed April 28, 2020.
org/10.1109/TIV.2020.29807 58. Gruyer, D., Belaroussi, R., & Revilloud, M. (2016). Accurate lateral position‑
Brunker, A., Wohlgemuth, T., Frey, M., & Gauterin, F. (2018). Odometry 2.0: A ing from map data and road marking detection. Expert Systems with
slip‑adaptive EIF‑based four‑wheel‑odometry model for parking. IEEE Applications, 43, 1–8.
Transactions on Intelligent Vehicles, 4(1), 114–126. Guo, X., Ansari, N., Li, L., & Li, H. (2018). Indoor localization by fusing a group
Bshara, M., Orguner, U., Gustafsson, F., & Van Biesen, L. (2011). Robust tracking of fngerprints based on random forests. IEEE Internet of Things Journal,
in cellular networks using HMM flters and cell‑ID measurements. IEEE 5(6), 4686–4698.
Transactions on Vehicular Technology, 60(3), 1016–1024. Guvenc, I., & Chong, C. C. (2009). A survey on TOA based wireless localization
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). and NLOS mitigation techniques. IEEE Communications Surveys and
Past, present, and future of simultaneous localization and mapping: Tutorials, 11(3), 107–124.
Toward the robust‑perception age. IEEE Transactions on Robotics, 32(6), Haeberlen, A., Flannery, E., Ladd, A. M., Rudys, A., Wallach, D. S., & Kavraki, L.E.
1309–1332. (2004). Practical robust localization over large‑scale 802.11 wireless
Chen, C., Zhao, P., Lu, C. X., Wang, W., Markham, A., & Trigoni, A. (2020). Deep‑ networks. In Proceedings of the 10th annual international conference on
learning‑based pedestrian inertial navigation: Methods, data set, and Mobile computing and networking (pp. 70–84). Philadelphia, PA: IEEE.
on‑device inference. IEEE Internet of Things Journal, 7(5), 4431–4441. Hähnel, B. F. D., & Fox, D. (2006). Gaussian processes for signal strength‑based
Cheng, Y. C., Chawathe, Y., Lamarca, A., & Krumm, J. (2005). Accuracy charac‑ location estimation. In Proceeding of robotics: Science and systems.
terization for metropolitan‑scale Wi‑Fi localization. In Proceedings of the Philadelphia, PA: IEEE.
3rd international conference on mobile systems, applications, and services, Halperin, D., Hu, W., Sheth, A., & Wetherall, D. (2011). Tool release: Gathering
MobiSys 2005 (pp. 233–245). Seattle, WA: IEEE. 802.11 n traces with channel state information. ACM SIGCOMM Com-
Chetverikov, D., Svirko, D., Stepanov, D., & Krsek, P. (2002). The trimmed iterative puter Communication Review, 41(1), 53–53.
closest point algorithm. Object recognition supported by user interaction He, S., Chan, S. H. G., Yu, L., & Liu, N. (2018). SLAC: Calibration‑free pedometer‑
for service robots (pp. 545–548). IEEE: Quebec City, QC. fngerprint fusion for indoor localization. IEEE Transactions on Mobile
Ciurana, M., Barcelo‑Arroyo, F., & Izquierdo, F. (2007). A ranging system with Computing, 17(5), 1176–1189.
IEEE 802.11 data frames. In 2007 IEEE radio and wireless symposium (pp. Ibisch, A., Stümper, S., Altinger, H., Neuhausen, M., Tschentscher, M., Schlipsing,
133–136). Long Beach, CA: IEEE. M., Salinen, J., & Knoll, A. (2013). Towards autonomous driving in a
Cluzel, S., Franck, L., Radzik, J., Cazalens, S., Dervin, M., Baudoin, C., & Drago‑ parking garage: Vehicle localization and tracking using environment‑
mirescu, D. (2018). 3GPP NB‑IOT coverage extension using LEO satel‑ embedded lidar sensors. In 2013 IEEE intelligent vehicles symposium (IV)
lites. IEEE Vehicular Technology Conference (pp. 1–5). IEEE: Porto. (pp. 829–834). Gold Coast: IEEE.
de Paula Veronese, L., Guivant, J., Cheein, F. A. A., Oliveira‑Santos, T., Mutz, F., de Ibisch, A., Houben, S., Michael, M., Kesten, R., & Schuller, F. (2015). Arbitrary
Aguiar, E., et al. (2016). A light‑weight yet accurate localization system object localization and tracking via multiple‑camera surveillance
for autonomous cars in large‑scale and complex environments. 2016 system embedded in a parking garage. In Video surveillance and