Page 31 - 卫星导航2021年第1-2合期
P. 31

El‑Sheimy and Li  Satell Navig             (2021) 2:7                                 Page 21 of 23





            References                                            IEEE 19th international conference on intelligent transportation systems
            Abdulrahim, K., Hide, C., Moore, T., & Hill, C. (2010). Aiding MEMS IMU with   (ITSC) (pp. 520–525). IEEE: Rio de Janeiro.
                building heading for indoor pedestrian navigation. In 2010 ubiquitous   Decawave. (2020). DWM1000 Module. https ://www.decaw ave.com/produ ct/
                positioning indoor navigation and location based service. Helsinki: IEEE.  dwm10 00‑modul e/. Accessed April 28, 2020.
            Abdulrahim, K., Hide, C., Moore, T., & Hill, C. (2012). Using constraints for   del Peral‑Rosado, J. A., Raulefs, R., López‑Salcedo, J. A., & Seco‑Granados, G.
                shoe mounted indoor pedestrian navigation. Journal of Navigation,   (2017). Survey of cellular mobile radio localization methods: From 1G to
                65(1), 15–28.                                     5G. IEEE Communications Surveys and Tutorials, 20(2), 1124–1148.
            Abuelsamid, S. (2017). BMW, HERE and mobileye team up to crowd‑source   Dodge, D. (2013). Indoor Location startups innovating Indoor Positioning.
                HD maps for self‑driving. https ://www.forbe s.com/sites /samab uelsa   https ://dondo dge.typep ad.com/the_next_big_thing /2013/06/indoo
                mid/2017/02/21/bmw‑here‑and‑mobil eye‑team‑up‑to‑crowd ‑sourc   r‑locat ion‑start ups‑innov ating ‑indoo r‑posit ionin g.html. Accessed April
                e‑hd‑maps‑for‑self‑drivi ng/#6f04e 0577c b3. Accessed April 28, 2020.  28, 2020.
            Agency, E. G. (2019). Report on road user needs and requirements. https   El‑Sheimy, N., & Niu, X. (2007a). The promise of MEMS to the navigation com‑
                ://www.gsc‑europ a.eu/sites /defau lt/fles /sites /all/fles /Repor t_on_  munity. Inside GNSS, 2(2), 46–56.
                User_Needs _and_Requi remen ts_Road.pdf. Accessed April 28, 2020.  El‑Sheimy, N., & Niu, X. (2007b). The promise of MEMS to the navigation com‑
            Alvarez, D., González, R. C., López, A., & Alvarez, J. C. (2006). Comparison   munity. Inside GNSS, 2(2), 26–56.
                of step length estimators from weareable accelerometer devices.   El‑Sheimy, N., Hou, H., & Niu, X. (2007). Analysis and modeling of inertial
                Annual international conference of the IEEE engineering in medicine and   sensors using Allan variance. IEEE Transactions on Instrumentation and
                biology (pp. 5964–5967). IEEE: New York.          Measurement, 57(1), 140–149.
            Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., &   El‑Sheimy, N., & Youssef, A. (2020). Inertial sensors technologies for navigation
                Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in   applications: State of the art and future trends. Satellite Navigation, 1(1),
                Communications, 32(6), 1065–1082.                 2.
            Badawy, A., Khattab, T., Trinchero, D., Fouly, T. E., & Mohamed, A. (2014). A   FCC. (2015). FCC 15–9. https ://ecfsa pi.fcc.gov/fle/60001 02592 5.pdf. Accessed
                simple AoA estimation scheme. arXiv:1409.5744.    28 April 2020.
            Bai, L., Peng, C. Y., & Biswas, S. (2008). Association of DOA estimation from   Foxlin, E. (2005). Pedestrian tracking with shoe‑mounted inertial sensors. IEEE
                two ULAs. IEEE Transactions on Instrumentation and Measurement,   Computer Graphics and Applications, 25(6), 38–46.
                57(6), 1094–1101. https ://doi.org/10.1109/TIM.2007.91512 2.  Gao, Z., Ge, M., Li, Y., Pan, Y., Chen, Q., & Zhang, H. (2020). Modeling of multi‑
            Basnayake, C., Williams, T., Alves, P., & Lachapelle, G. J. G. W. (2010). Can GNSS   sensor tightly aided BDS triple‑frequency precise point positioning and
                Drive V2X? GPS World, 21(10), 35–43.              initial assessments. Information Fusion, 55, 184–198.
            Biber, P., & Straßer, W. (2003). The normal distributions transform: A new   Gebre‑Egziabher, D., Elkaim, G. H., David Powell, J., & Parkinson, B. W. (2006).
                approach to laser scan matching. Proceedings 2003 IEEE/RSJ international   Calibration of strapdown magnetometers in magnetic feld domain.
                conference on intelligent robots and systems (IROS) (pp. 2743–2748). IEEE:   Journal of Aerospace Engineering, 19(2), 87–102.
                Las Vegas, NV.                                Glennie, C., & Lichti, D. D. J. R. S. (2010). Static calibration and analysis of the
            Bluetooth. (2017). Exploring Bluetooth 5—going the distance. https ://www.  Velodyne HDL‑64E S2 for high accuracy mobile scanning. Remote Sens-
                bluet ooth.com/blog/explo ring‑bluet ooth‑5‑going ‑the‑dista nce/.   ing, 2(6), 1610–1624.
                Accessed April 28, 2020.                      Godha, S., & Cannon, M. E. (2007). GPS/MEMS INS integrated system for naviga‑
            Bluetooth. (2019). Bluetooth 5.1 Direction fnding. https ://www.bluet ooth.  tion in urban areas. GPS Solutions, 11(3), 193–203.
                com/wp‑conte nt/uploa ds/2019/05/BTAsi a/1145‑NORDI C‑Bluet ooth‑  Goldstein. (2019). Global Indoor Positioning and Indoor Navigation (IPIN)
                Asia‑2019B lueto oth‑5.1‑Direc tion‑Findi ng‑Theor y‑and‑Pract ice‑v0.pdf.   Market Outlook, 2024. https ://www.golds teinr esear ch.com/repor t/
                Accessed April 28, 2020.                          globa l‑indoo r‑posit ionin g‑and‑indoo r‑navig ation ‑ipin‑marke t‑outlo
            Brossard, M., Barrau, A., & Bonnabel, S. (2020). AI‑IMU dead‑reckoning.   ok‑2024‑globa l‑oppor tunit y‑and‑deman d‑analy sis‑marke t‑forec ast‑
                IEEE Transactions on Intelligent Vehicles, 5(4), 585–595. https ://doi.  2016‑2024. Accessed April 28, 2020.
                org/10.1109/TIV.2020.29807 58.                Gruyer, D., Belaroussi, R., & Revilloud, M. (2016). Accurate lateral position‑
            Brunker, A., Wohlgemuth, T., Frey, M., & Gauterin, F. (2018). Odometry 2.0: A   ing from map data and road marking detection. Expert Systems with
                slip‑adaptive EIF‑based four‑wheel‑odometry model for parking. IEEE   Applications, 43, 1–8.
                Transactions on Intelligent Vehicles, 4(1), 114–126.  Guo, X., Ansari, N., Li, L., & Li, H. (2018). Indoor localization by fusing a group
            Bshara, M., Orguner, U., Gustafsson, F., & Van Biesen, L. (2011). Robust tracking   of fngerprints based on random forests. IEEE Internet of Things Journal,
                in cellular networks using HMM flters and cell‑ID measurements. IEEE   5(6), 4686–4698.
                Transactions on Vehicular Technology, 60(3), 1016–1024.  Guvenc, I., & Chong, C. C. (2009). A survey on TOA based wireless localization
            Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016).   and NLOS mitigation techniques. IEEE Communications Surveys and
                Past, present, and future of simultaneous localization and mapping:   Tutorials, 11(3), 107–124.
                Toward the robust‑perception age. IEEE Transactions on Robotics, 32(6),   Haeberlen, A., Flannery, E., Ladd, A. M., Rudys, A., Wallach, D. S., & Kavraki, L.E.
                1309–1332.                                        (2004). Practical robust localization over large‑scale 802.11 wireless
            Chen, C., Zhao, P., Lu, C. X., Wang, W., Markham, A., & Trigoni, A. (2020). Deep‑  networks. In Proceedings of the 10th annual international conference on
                learning‑based pedestrian inertial navigation: Methods, data set, and   Mobile computing and networking (pp. 70–84). Philadelphia, PA: IEEE.
                on‑device inference. IEEE Internet of Things Journal, 7(5), 4431–4441.  Hähnel, B. F. D., & Fox, D. (2006). Gaussian processes for signal strength‑based
            Cheng, Y. C., Chawathe, Y., Lamarca, A., & Krumm, J. (2005). Accuracy charac‑  location estimation. In Proceeding of robotics: Science and systems.
                terization for metropolitan‑scale Wi‑Fi localization. In Proceedings of the   Philadelphia, PA: IEEE.
                3rd international conference on mobile systems, applications, and services,   Halperin, D., Hu, W., Sheth, A., & Wetherall, D. (2011). Tool release: Gathering
                MobiSys 2005 (pp. 233–245). Seattle, WA: IEEE.    802.11 n traces with channel state information. ACM SIGCOMM Com-
            Chetverikov, D., Svirko, D., Stepanov, D., & Krsek, P. (2002). The trimmed iterative   puter Communication Review, 41(1), 53–53.
                closest point algorithm. Object recognition supported by user interaction   He, S., Chan, S. H. G., Yu, L., & Liu, N. (2018). SLAC: Calibration‑free pedometer‑
                for service robots (pp. 545–548). IEEE: Quebec City, QC.  fngerprint fusion for indoor localization. IEEE Transactions on Mobile
            Ciurana, M., Barcelo‑Arroyo, F., & Izquierdo, F. (2007). A ranging system with   Computing, 17(5), 1176–1189.
                IEEE 802.11 data frames. In 2007 IEEE radio and wireless symposium (pp.   Ibisch, A., Stümper, S., Altinger, H., Neuhausen, M., Tschentscher, M., Schlipsing,
                133–136). Long Beach, CA: IEEE.                   M., Salinen, J., & Knoll, A. (2013). Towards autonomous driving in a
            Cluzel, S., Franck, L., Radzik, J., Cazalens, S., Dervin, M., Baudoin, C., & Drago‑  parking garage: Vehicle localization and tracking using environment‑
                mirescu, D. (2018). 3GPP NB‑IOT coverage extension using LEO satel‑  embedded lidar sensors. In 2013 IEEE intelligent vehicles symposium (IV)
                lites. IEEE Vehicular Technology Conference (pp. 1–5). IEEE: Porto.  (pp. 829–834). Gold Coast: IEEE.
            de Paula Veronese, L., Guivant, J., Cheein, F. A. A., Oliveira‑Santos, T., Mutz, F., de   Ibisch, A., Houben, S., Michael, M., Kesten, R., & Schuller, F. (2015). Arbitrary
                Aguiar, E., et al. (2016). A light‑weight yet accurate localization system   object localization and tracking via multiple‑camera surveillance
                for autonomous cars in large‑scale and complex environments. 2016   system embedded in a parking garage. In Video surveillance and
   26   27   28   29   30   31   32   33   34   35   36