Page 33 - 卫星导航2021年第1-2合期
P. 33
El‑Sheimy and Li Satell Navig (2021) 2:7 Page 23 of 23
Rusu, R. B., Blodow, N., Marton, Z. C., & Beetz, M. (2008). Aligning point cloud Vasisht, D., Kumar, S., & Katabi, D. (2016). Decimeter‑level localization with a
views using persistent feature histograms. 2008 IEEE/RSJ international single WiFi access point. 13th USENIX symposium on networked systems
conference on intelligent robots and systems (pp. 3384–3391). IEEE: Nice. design and implementation (pp. 165–178). USENIX Association: Santa
SAE‑International. (2016). Taxonomy and defnitions for terms related to driv‑ Clara.
ing automation systems for on‑road motor vehicles. https ://www.sae. Velodyne. (2020). HDL‑64E High Defnition Real‑Time 3D Lidar. https ://velod
org/stand ards/conte nt/j3016 _20160 9/. Accessed April 28, 2020. yneli dar.com/produ cts/hdl‑64e/. Accessed April 28, 2020.
Sallouha, H., Azari, M. M., Chiumento, A., & Pollin, S. (2018). Aerial anchors posi‑ Wang, L., Chen, R. Z., Li, D. R., Zhang, G., Shen, X., Yu, B. G., et al. (2018). Initial
tioning for reliable RSS‑based outdoor localization in urban environ‑ assessment of the LEO based navigation signal augmentation system
ments. IEEE Wireless Communications Letters, 7(3), 376–379. from Luojia‑1A satellite. Sensors (Switzerland), 18(11), 3919.
Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry [tutorial]. IEEE Robotics Wang, Y., & Ho, K. J. I. T. O. W. C. (2015). An asymptotically efcient estimator
and Automation Magazine, 18(4), 80–92. in closed‑form for 3‑D AOA localization using a sensor network. IEEE
Schneider, O. (2010). Requirements for positioning and navigation in under‑ Transactions on Wireless Communications, 14(12), 6524–6535.
ground constructions. International conference on indoor positioning and Wang, Y. T., Li, J., Zheng, R., & Zhao, D. (2017). ARABIS: An Asynchronous acous‑
indoor navigation (pp. 1–4). IEEE: Zurich. tic indoor positioning system for mobile devices. 2017 international
Schönenberger. (2019). The automotive digital transformation and the eco‑ conference on indoor positioning and indoor navigation (pp. 1–8). IEEE:
nomic impacts of existing data access model. https ://www.fare gion1 Sapporo.
.com/wp‑conte nt/uploa ds/2019/03/The‑Autom otive ‑Digit al‑Trans WiFi‑Alliance. (2020). Wi‑Fi HaLow low power, long range Wi‑Fi. https ://www.
forma tion_Full‑study .pdf. Accessed April 28, 2020. wi‑f.org/disco ver‑wi‑f/wi‑f‑halow . Accessed April 28, 2020.
Seco, F., & Jiménez, A. R. (2017). Autocalibration of a wireless positioning net‑ Will, H., Hillebrandt, T., Yuan, Y., Yubin, Z., & Kyas, M. (2012). The membership
work with a FastSLAM algorithm. 2017 international conference on indoor degree min‑max localization algorithm. 2012 ubiquitous positioning,
positioning and indoor navigation (pp. 1–8). IEEE: Sapporo. indoor navigation, and location based service (UPINLBS) (pp. 1–10). IEEE:
Seif, H. G., & Hu, X. (2016). Autonomous driving in the iCity—HD maps as a key Helsinki.
challenge of the automotive industry. Engineering, 2(2), 159–162. Witrisal, K., Meissner, P., Leitinger, E., Shen, Y., Gustafson, C., Tufvesson, F., et al.
Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and (2016). High‑accuracy localization for assisted living: 5G systems will
challenges. IEEE Internet of Things Journal, 3(5), 637–646. turn multipath channels from foe to friend. IEEE Signal Processing
Shin, E. H. (2005). Estimation techniques for low-cost inertial navigation. Calgary: Magazine, 33(2), 59–70.
University of Calgary. Wolcott, R. W., & Eustice, R. M. (2014). Visual localization within lidar maps for
Shin, S.H., Park, C.G., Kim, J.W., Hong, H.S., & Lee, J.M. (2007). Adaptive step automated urban driving. 2014 IEEE/RSJ international conference on intel-
length estimation algorithm using low‑cost MEMS inertial sensors. In ligent robots and systems (pp. 176–183). IEEE: Chicago, IL.
Proceedings of the 2007 IEEE sensors applications symposium. San Diego, Wolcott, R. W., & Eustice, R. M. (2017). Robust LIDAR localization using
CA: IEEE. multiresolution Gaussian mixture maps for autonomous driving. The
Singh, S. (2015). Critical reasons for crashes investigated in the national motor International Journal of Robotics Research, 36(3), 292–319.
vehicle crash causation survey. https ://crash stats .nhtsa .dot.gov/Api/ Zhang, J., Han, G., Sun, N., & Shu, L. (2017). Path‑loss‑based fngerprint localiza‑
Publi c/ViewP ublic ation /81211 5. Accessed April 28, 2020. tion approach for location‑based services in indoor environments. IEEE
Stephenson, S. (2016). Automotive applications of high precision GNSS. Notting‑ Access, 5, 13756–13769.
ham: University of Nottingham. Zhang, P., Lu, J., Wang, Y., & Wang, Q. (2017). Cooperative localization in 5G
Synced. (2018). The Golden Age of HD Mapping for Autonomous Driving. networks: A survey. ICT Express, 3(1), 27–32.
https ://mediu m.com/synce drevi ew/the‑golde n‑age‑of‑hd‑mappi ng‑ Zhou, B., Li, Q., Mao, Q., Tu, W., & Zhang, X. (2015). Activity sequence‑based
for‑auton omous ‑drivi ng‑b2a2e c4c11 d. Accessed April 28, 2020. indoor pedestrian localization using smartphones. IEEE Transactions on
TDK‑InvenSense. (2020). MPU‑9250 Nine‑Axis (Gyro + Accelerometer + Human-Machine Systems, 45(5), 562–574.
™
Compass) MEMS MotionTracking Device. https ://inven sense .tdk.com/ Zhuang, Y., Lan, H., Li, Y., & El‑Sheimy, N. (2015). PDR/INS/WiFi integration based
produ cts/motio n‑track ing/9‑axis/mpu‑9250/. Accessed April 28, 2020. on handheld devices for indoor pedestrian navigation. Micromachines,
Tesla. (2020). Autopilot. https ://www.tesla .com/autop ilot. Accessed April 28, 6(6), 793–812.
2020. Zhuang, Y., Yang, J., Li, Y., Qi, L., & El‑Sheimy, N. (2016). Smartphone‑based
Tiemann, J., Schweikowski, F., & Wietfeld, C. (2015). Design of an UWB indoor‑ indoor localization with bluetooth low energy beacons. Sensors, 16(5),
positioning system for UAV navigation in GNSS‑denied environments. 596.
2015 international conference on indoor positioning and indoor navigation Zhuang, Y., Wang, Q., Li, Y., Gao, Z. Z., Zhou, B. P., Qi, L. N., et al. (2019). The inte‑
(IPIN) (pp. 1–7). IEEE: Calgary. gration of photodiode and camera for visible light positioning by using
Titterton, D., Weston, J.L., & Weston, J. (2004). Strapdown inertial navigation fxed‑lag ensemble Kalman smoother. Remote Sensing, 11(11), 1387.
technology. IET.
TomTom. (2020). Extending the vision of automated vehicles with HD Maps Publisher’s note
and ADASIS. http://downl oad.tomto m.com/open/banne rs/Elekt robit
_TomTo m_white paper .pdf. Accessed April 28, 2020. Springer Nature remains neutral with regard to jurisdictional claims in pub‑
Trimble. (2020). Trimble RTX. https ://posit ionin gserv ices.trimb le.com/servi ces/ lished maps and institutional afliations.
rtx/?gclid =CjwKC AjwnI r1BRA WEiwA 6GpwN Y78s‑u6pUz ELeIu _elfou
mO63L mR2QH f72Q9 pM‑L‑NXyJj omWCX 6BoCE 5YQAv D_BwE. Accessed
April 28, 2020.