Page 32 - 卫星导航2021年第1-2合期
P. 32

El‑Sheimy and Li  Satell Navig             (2021) 2:7                                   Page 22 of 23





                transportation imaging applications 2015 (pp. 94070G). San Francisco,   INFOCOM 2006. 25TH IEEE international conference on computer com-
                CA: International Society for Optics and Photonics.  munications. Barcelona: IEEE.
            IEEE. (2020). IEEE 802.11TM Wireless Local Area Network. http://www.ieee8   Lin, Y., Gao, F., Qin, T., Gao, W. L., Liu, T. B., Wu, W., et al. (2018). Autonomous
                02.org/11/. Accessed 28 April 2020.               aerial navigation using monocular visual‑inertial fusion. Journal of Field
            Kaune, R., Hörst, J., & Koch, W. (2011). Accuracy analysis for TDOA localization in   Robotics, 35(1), 23–51.
                sensor networks. 14th international conference on information fusion (pp.   Liu, R., Wang, J., & Zhang, B. (2020). High defnition map for automated driving:
                1–8). IEEE: Chicago, Illinois, USA.               Overview and analysis. The Journal of Navigation, 73(2), 324–341.
            Kim, K. J., Agrawal, V., Gaunaurd, I., Gailey, R. S., & Bennett, C. L. (2016). Missing   MachineDesign. (2020). 5G’s Important Role in Autonomous Car Technol‑
                sample recovery for wireless inertial sensor‑based human movement   ogy. https ://www.machi nedes ign.com/mecha nical ‑motio n‑syste ms/
                acquisition. IEEE Transactions on Neural Systems and Rehabilitation Engi-  artic le/21837 614/5gs‑impor tant‑role‑in‑auton omous ‑car‑techn ology .
                neering, 24(11), 1191–1198. https ://doi.org/10.1109/TNSRE .2016.25321   Accessed April 28, 2020.
                21.                                           Marvelmind. (2020). Indoor Navigation System Operating manual. https ://
            Kodippili, N. S., & Dias, D. (2010). Integration of fngerprinting and trilateration   marve lmind .com/pics/marve lmind _navig ation _syste m_manua l.pdf.
                techniques for improved indoor localization. In 2010 7th international   Accessed April 28, 2020.
                conference on wireless and optical communications networks. Colombo:   Maybeck, P. S. (1982). Stochastic models, estimation, and control. London:
                IEEE.                                             Academic Press.
            Kok, M., & Solin, A. (2018). Scalable magnetic feld SLAM in 3D using Gaussian   McManus, C., Churchill, W., Napier, A., Davis, B., & Newman, P. (2013). Distraction
                process maps. 2018 21st international conference on information fusion   suppression for vision‑based pose estimation at city scales. 2013 IEEE
                (FUSION) (pp. 1353–1360). IEEE: Cambridge.        international conference on robotics and automation (pp. 3762–3769).
            Langley, R. B. (1999). Dilution of precision. GPS World, 1(1), 1–5.  IEEE: Karlsruhe.
            Leugner, S., Pelka, M., & Hellbrück, H. (2016). Comparison of wired and wireless   Mur‑Artal, R., & Tardós, J. D. (2017). Orb‑slam2: An open‑source slam system for
                synchronization with clock drift compensation suited for U‑TDoA locali‑  monocular, stereo, and RGB‑d cameras. IEEE Transactions on Robotics,
                zation. 2016 13th workshop on positioning, navigation and communica-  33(5), 1255–1262.
                tions (WPNC) (pp. 1–4). IEEE: Bremen.         NHTSA. (2017). Federal motor vehicle safety standards; V2V communications.
            Levinson, J., Montemerlo, M., & Thrun, S. (2007). Map‑based precision vehicle   Federal Register, 82(8), 3854–4019.
                localization in urban environments. In Robotics: Science and systems (pp.   Niu, X., Zhang, H., Chiang, K. W., & El‑Sheimy, N. (2010). Using land‑vehicle
                1). Atlanta, GA: IEEE.                            steering constraint to improve the heading estimation of mems GPS/
            Levinson, J., & Thrun, S. (2010). Robust vehicle localization in urban environ‑  ins georeferencing systems. ISPRS - International Archives of the Photo-
                ments using probabilistic maps. 2010 IEEE international conference on   grammetry, Remote Sensing Spatial Information Sciences, 38(1), 1–5.
                robotics and automation (pp. 4372–4378). IEEE: Anchorage, AK.  Niu, X., Li, Y., Kuang, J., & Zhang, P. (2019). Data fusion of dual foot‑mounted
            Li, X. (2006). RSS‑based location estimation with unknown pathloss model.   IMU for pedestrian navigation. IEEE Sensors Journal, 19(12), 4577–4584.
                IEEE Transactions on Wireless Communications, 5(12), 3626–3633. https ://  NovAtel, H. (2020). IMU‑FSAS. https ://docs.novat el.com/OEM7/Conte nt/Techn
                doi.org/10.1109/TWC.2006.25698 5.                 ical_Specs _IMU/FSAS_Overv iew.htm. Accessed 28 April 2020.
            Li, Y., Georgy, J., Niu, X., Li, Q., & El‑Sheimy, N. (2015). Autonomous calibration of   Nvidia. (2020). DRIVE Labs: How Localization Helps Vehicles Find Their Way.
                MEMS gyros in consumer portable devices. IEEE Sensors Journal, 15(7),   https ://news.devel oper.nvidi a.com/drive ‑labs‑how‑local izati on‑helps
                4062–4072.                                        ‑vehic les‑fnd‑their ‑way/. Accessed April 28, 2020.
            Li, Y., Zhuang, Y., Zhang, P., Lan, H., Niu, X., & El‑Sheimy, N. (2017). An improved   Oteafy, S. M. A., & Hassanein, H. S. (2018). IoT in the fog: A roadmap for
                inertial/wif/magnetic fusion structure for indoor navigation. Informa-  data‑centric IoT development. IEEE Communications Magazine, 56(3),
                tion Fusion, 34, 101–119.                         157–163.
            Li, Y., Gao, Z., He, Z., Zhang, P., Chen, R., & El‑Sheimy, N. (2018). Multi‑sensor   Pei, L., Liu, D., Zou, D., Leefookchoy, R., Chen, Y., & He, Z. (2018). Optimal
                multi‑foor 3D localization with robust foor detection. IEEE Access, 6,   heading estimation based multidimensional particle flter for pedes‑
                76689–76699.                                      trian indoor positioning. IEEE Access, 6, 49705–49720. https ://doi.
            Li, Y., Zahran, S., Zhuang, Y., Gao, Z. Z., Luo, Y. R., He, Z., et al. (2019a). IMU/mag‑  org/10.1109/ACCES S.2018.28687 92.
                netometer/barometer/mass‑fow sensor integrated indoor quadrotor   Petovello, M. (2003). Real-time integration of a tactical-grade IMU and GPS for
                UAV localization with robust velocity updates. Remote Sensing, 11(7),   high-accuracy positioning and navigation. Calgary: University of Calgary.
                838. https ://doi.org/10.3390/rs110 70838 .   Pivato, P., Palopoli, L., & Petri, D. (2011). Accuracy of RSS‑based centroid
            Li, Y., Gao, Z. Z., He, Z., Zhuang, Y., Radi, A., Chen, R. Z., & El‑Sheimy, N. (2019b).   localization algorithms in an indoor environment. IEEE Transactions on
                Wireless fngerprinting uncertainty prediction based on machine learn‑  Instrumentation and Measurement, 60(10), 3451–3460.
                ing. Sensors, 19(2), 324.                     Poggenhans, F., Salscheider, N. O., & Stiller, C. (2018). Precise localization in
            Li, Y., Hu, X., Zhuang, Y., Gao, Z., Zhang, P., & El‑Sheimy, N. (2019c). Deep   high‑defnition road maps for urban regions. 2018 IEEE/RSJ international
                Reinforcement Learning (DRL): another perspective for unsupervised   conference on intelligent robots and systems (IROS) (pp. 2167–2174). IEEE:
                wireless localization. IEEE Internet of Things Journal.  Madrid.
            Li, Y., He, Z., Zhuang, Y., Gao, Z. Z., Tsai, G. J., & Pei, L. (2019d). Robust localiza‑  Quuppa. (2020). Product and Technology. http://quupp a.com/techn ology /.
                tion through integration of crowdsourcing and machine learning. In   Accessed 28 April 2020.
                Presented at the International conference on mobile mapping technology.   Radi, A., Bakalli, G., Guerrier, S., El‑Sheimy, N., Sesay, A. B., & Molinari, R. (2019).
                Shenzhen, China.                                  A multisignal wavelet variance‑based framework for inertial sensor
            Li, Y., He, Z., Gao, Z., Zhuang, Y., Shi, C., & El‑Sheimy, N. (2019). Toward robust   stochastic error modeling. IEEE Transactions on Instrumentation and
                crowdsourcing‑based localization: A fngerprinting accuracy indicator   Measurement, 68(12), 4924–4936.
                enhanced wireless/magnetic/inertial integration approach. IEEE Internet   Rantakokko, J., Händel, P., Fredholm, M., & Marsten‑Eklöf, F. (2010). User require‑
                of Things Journal, 6(2), 3585–3600.               ments for localization and tracking technology: A survey of mission‑
            Li, Y., Zhuang, Y., Hu, X., Gao, Z. Z., Hu, J., Chen, L., He, Z., Pei, L., Chen, K. J., Wang,   specifc needs and constraints. 2010 international conference on indoor
                M. S., Niu, X. J., Chen, R. Z., Thompson, J., Ghannouchi, F., & El‑Sheimy,   positioning and indoor navigation (pp. 1–9). IEEE: Zurich.
                N. (2020a). Location‑Enabled IoT (LE‑IoT): A survey of positioning tech‑  Reid, T. G. R., Houts, S. E., Cammarata, R., Mills, G., Agarwal, S., Vora, A., &
                niques, error sources, and mitigation. IEEE Internet of Things Journal.  Pandey, G. (2019). Localization requirements for autonomous vehicles.
            Li, Y., Yan, K. L., He, Z., Li, Y. Q., Gao, Z. Z., Pei, L., et al. (2020). Cost‑efective locali‑  arXiv:1906.01061.
                zation using RSS from single wireless access point. IEEE Transactions   Restrepo, J. (2020). World radio 5G roadmap: challenges and opportunities
                on Instrumentation and Measurement, 69(5), 1860–1870. https ://doi.  ahead. https ://www.itu.int/en/ITU‑R/semin ars/rrs/RRS‑17‑Ameri cas/
                org/10.1109/TIM.2019.29227 52.                    Docum ents/Forum /1_ITU%20Joa quin%20Res trepo .pdf. Accessed April
            Lim, H., Kung, L. C., Hou, J. C., & Luo, H. (2006). Zero‑confguration, robust   28, 2020.
                indoor localization: Theory and experimentation. In Proceedings IEEE
   27   28   29   30   31   32   33   34   35   36   37