Page 168 - 《摩擦学学报》2021年第5期
P. 168

第 5 期                     朱晓彤, 等: 接触应力对FCB车轮钢组织演变与性能的影响                                      757

                 Wear, 2013, 298-299: 42–47. doi: 10.1016/j.wear.2012.11.064.  locomotive Wheel[J]. Railway Quality Control, 2018, 46(8): 36–39
            [11]  Shah  M,  Das  Bakshi  S.  Three-body  abrasive  wear  of  carbide-free  (in Chinese) [杨兴宽, 刘颖鑫, 武小鹏, 等. 机车车轮复合超声滚压
                 bainite,  martensite  and  bainite-martensite  structure  of  similar  表面强化工艺研究[J]. 铁道技术监督, 2018, 46(8): 36–39]. doi:
                 hardness[J].  Wear,  2018,  402-403:  207–215.  doi:  10.1016/j.wear.  10.3969/j.issn.1006-9178.2018.08.011.
                 2018.02.020.                                  [18]  Yang  Shunhua,  Ding  Dihua.  Theoretical  basis  of  crystal
            [12]  Sankaran  S,  Sarma  V  S,  Padmanabhan  K  A.  Low  cycle  fatigue  dislocation[M]. Beijing: Science Press, 1998: 223-233 (in Chinese)
                 behavior  of  a  multiphase  microalloyed  medium  carbon  steel:
                                                                   [杨顺华, 丁棣华. 晶体位错理论基础[M]. 北京: 科学出版社,
                 comparison  between  ferrite-pearlite  and  quenched  and  tempered
                                                                   1998: 223-233].
                 microstructures[J].  Materials  Science  and  Engineering:A,  2003,
                                                               [19]  P.  3.  Wallyev.  Severe  plastic  deformation  nanomaterials  [M].
                 345(1-2): 328–335. doi: 10.1016/S0921-5093(02)00511-7.
                                                                   Beijing: Science Press, 2006: 3-24.
            [13]  Hilditch T, Beladi H, Hodgson P, et al. Role of microstructure in the
                                                               [20]  Louisette Priester, Grain Boundaries and Crystalline Plasticity [M].
                 low  cycle  fatigue  of  multi-phase  steels[J].  Materials  Science  and
                                                                   Beijing: Machinery Industry Press, 2015: 131-137.
                 Engineering:A, 2012, 534: 288–296. doi: 10.1016/j.msea.2011.11.071.
                                                               [21]  Hu  Jing,  Lin  Dongliang.  EBSD  study  of  the  microstructural
            [14]  Zhou  Qian,  Qian  Lihe,  Meng  Jiangying,  et  al.  Low-cycle  fatigue
                                                                   evolution  of  large  grained  Ni-42Al  alloy  during  superplastic
                 behavior and microstructural evolution in a low-carbon carbide-free
                                                                   deformation[J]. Chinese Journal of Stereology and Image Analysis,
                 bainitic steel[J]. Materials & Design, 2015, 85: 487–496. doi: 10.1016/
                                                                   2007, 12(4): 278–281 (in Chinese) [胡静, 林栋樑. EBSD技术对大
                 j.matdes.2015.06.172.
                                                                   晶粒Ni-42Al合金超塑变形过程组织演变的研究[J]. 中国体视学
            [15]  Hasan  S  M,  Chakrabarti  D,  Singh  S  B.  Dry  rolling/sliding  wear
                                                                   与图像分析, 2007, 12(4): 278–281]. doi: 10.13505/j.1007-1482.2007.
                 behaviour of pearlitic rail and newly developed carbide-free bainitic
                                                                   04.010.
                 rail  steels[J].  Wear,  2018,  408-409:  151–159.  doi:  10.1016/j.wear.
                                                               [22]  Kumar  A,  Saxena  A  K,  Kirchlechner  C,  et  al.  In  situ  study  on
                 2018.05.006.
            [16]  Liu  Q,  Jensen  D  J,  Hansen  N.  Effect  of  grain  orientation  on  fracture behaviour of white etching layers formed on rails[J]. Acta
                 deformation  structure  in  cold-rolled  polycrystalline  aluminium[J].  Materialia, 2019, 180: 60–72. doi: 10.1016/j.actamat.2019.08.060.
                 Acta  Materialia,  1998,  46(16):  5819–5838.  doi:  10.1016/S1359-  [23]  Chen Yuda, Ren Ruiming, Zhao Xiujuan, et al. Study on the surface
                 6454(98)00229-8.                                  microstructure  evolution  and  wear  property  of  bainitic  rail  steel
            [17]  Yang  Xingkuan,  Liu  Yingxin,  Wu  Xiaopeng,  et  al.  Study  on  under dry sliding wear[J]. Wear, 2020, 448-449: 203217. doi: 10.1016/
                 strengthening technology of composite ultrasonic rolling surface of  j.wear.2020.203217.
   163   164   165   166   167   168   169   170   171   172   173