Page 168 - 《摩擦学学报》2021年第5期
P. 168
第 5 期 朱晓彤, 等: 接触应力对FCB车轮钢组织演变与性能的影响 757
Wear, 2013, 298-299: 42–47. doi: 10.1016/j.wear.2012.11.064. locomotive Wheel[J]. Railway Quality Control, 2018, 46(8): 36–39
[11] Shah M, Das Bakshi S. Three-body abrasive wear of carbide-free (in Chinese) [杨兴宽, 刘颖鑫, 武小鹏, 等. 机车车轮复合超声滚压
bainite, martensite and bainite-martensite structure of similar 表面强化工艺研究[J]. 铁道技术监督, 2018, 46(8): 36–39]. doi:
hardness[J]. Wear, 2018, 402-403: 207–215. doi: 10.1016/j.wear. 10.3969/j.issn.1006-9178.2018.08.011.
2018.02.020. [18] Yang Shunhua, Ding Dihua. Theoretical basis of crystal
[12] Sankaran S, Sarma V S, Padmanabhan K A. Low cycle fatigue dislocation[M]. Beijing: Science Press, 1998: 223-233 (in Chinese)
behavior of a multiphase microalloyed medium carbon steel:
[杨顺华, 丁棣华. 晶体位错理论基础[M]. 北京: 科学出版社,
comparison between ferrite-pearlite and quenched and tempered
1998: 223-233].
microstructures[J]. Materials Science and Engineering:A, 2003,
[19] P. 3. Wallyev. Severe plastic deformation nanomaterials [M].
345(1-2): 328–335. doi: 10.1016/S0921-5093(02)00511-7.
Beijing: Science Press, 2006: 3-24.
[13] Hilditch T, Beladi H, Hodgson P, et al. Role of microstructure in the
[20] Louisette Priester, Grain Boundaries and Crystalline Plasticity [M].
low cycle fatigue of multi-phase steels[J]. Materials Science and
Beijing: Machinery Industry Press, 2015: 131-137.
Engineering:A, 2012, 534: 288–296. doi: 10.1016/j.msea.2011.11.071.
[21] Hu Jing, Lin Dongliang. EBSD study of the microstructural
[14] Zhou Qian, Qian Lihe, Meng Jiangying, et al. Low-cycle fatigue
evolution of large grained Ni-42Al alloy during superplastic
behavior and microstructural evolution in a low-carbon carbide-free
deformation[J]. Chinese Journal of Stereology and Image Analysis,
bainitic steel[J]. Materials & Design, 2015, 85: 487–496. doi: 10.1016/
2007, 12(4): 278–281 (in Chinese) [胡静, 林栋樑. EBSD技术对大
j.matdes.2015.06.172.
晶粒Ni-42Al合金超塑变形过程组织演变的研究[J]. 中国体视学
[15] Hasan S M, Chakrabarti D, Singh S B. Dry rolling/sliding wear
与图像分析, 2007, 12(4): 278–281]. doi: 10.13505/j.1007-1482.2007.
behaviour of pearlitic rail and newly developed carbide-free bainitic
04.010.
rail steels[J]. Wear, 2018, 408-409: 151–159. doi: 10.1016/j.wear.
[22] Kumar A, Saxena A K, Kirchlechner C, et al. In situ study on
2018.05.006.
[16] Liu Q, Jensen D J, Hansen N. Effect of grain orientation on fracture behaviour of white etching layers formed on rails[J]. Acta
deformation structure in cold-rolled polycrystalline aluminium[J]. Materialia, 2019, 180: 60–72. doi: 10.1016/j.actamat.2019.08.060.
Acta Materialia, 1998, 46(16): 5819–5838. doi: 10.1016/S1359- [23] Chen Yuda, Ren Ruiming, Zhao Xiujuan, et al. Study on the surface
6454(98)00229-8. microstructure evolution and wear property of bainitic rail steel
[17] Yang Xingkuan, Liu Yingxin, Wu Xiaopeng, et al. Study on under dry sliding wear[J]. Wear, 2020, 448-449: 203217. doi: 10.1016/
strengthening technology of composite ultrasonic rolling surface of j.wear.2020.203217.